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Presentation Overview

* Analysis Objectives
— Assess refinement effects as we approach stall
— How well do our error prediction methods work?
— How can we address/identify dissimilar refinement pairs?
e Error Quantification Method - ETE Solver
* Discussion of FUN3D results
— 28 through 36 degrees angle of attack
— Coarse/Medium/Fine grids
* Error Predictions Using ETE
— FUN3D Grid Sequence
— Cell-centered ETE on USM3D Solution
* New Approach for Assessment of Refinement Pairs

e Conclusions and Lessons Learned
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Errors in CFD Analysis

e Solution errors inherent to any CFD analysis
— Discretization errors (grid size/spacings, time step)
— Modeling errors (turbulence, transition, etc.)
— Usage, iterative convergence, coding errors, etc.
* Discretization errors generally most dominant, but must be understood
before tackling turbulence modeling issues
« How do we check our results? Verification & Validation (V&V)
— Compare with test data (validation)
— Perform grid refinement study (verification) — required workshop element!
— Richardson extrapolation given 3 mesh sequence
* Qur prior work at HLPW-1 examined refinement sequences at 13°, 28°

— Error transport model seemed capable of predicting increments between
coarse/fine and medium/fine solutions for these conditions

— Current follow-on explores increments near stall, maximum C,
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Study Objectives

* Explore mesh dependent effects as we approach stall
— UTS5 tetrahedral grid sequence employed
— FUN3D solver, Spalart-Allmaras turbulence model
* Apply Error Transport Model to solution sequences
— Evaluate method’s ability to predict increments between solutions

— If grid-induced errors can be predicted reliably, it potentially
precludes need to run fine grid solution

— In addition, reliable prediction could confirm confidence in results
* Investigate how to quantify dissimilar solution pairs

— Such pairs cannot be considered in refinement sequence

— ETE method cannot account for such disparities

— Potential approach developed with preliminary results shown

* Identify shortcomings that remain to be addressed
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Error Prediction / Quantification

e 3D Error Transport Equation (ETE) Solver for steady state flows
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— Inviscid residual: upwind terms of Roe flux

— Turbulent residual: accounts for effects of error in p, on mean flow
— k—¢, k—w, Spalart-Allmaras models supported

— Recently expanded to support cell-centered solvers and solve ETE
using cell-centered or node-centered discretization®

* Error Function Library
— Propagates predicted errors into derived variables of interest
— PLOT3D functions, integrated functions, etc.

* Cavallo, P.A,, O’'Gara, M.R., Feldman, G.M., and Liu, Z., “Unified Error Transport Equation Solver for Solution Verification on
Unstructured Grids,” AIAA Paper 2012-3345, 42" Fluid Dynamics Conference, New Orleans, LA, June 25-28, 2012.
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What Are We Looking For?

 Goal of Error Transport research is to establish alternative
solution verification method

— Provide reliable predictions of mesh-induced errors
— Prediction of coarse-to-fine grid increments
— Useful for quantifying local and integrated quantities

 Error bars predicted by ETE solution and Error Functions should:
1) Contain fine grid results
2) Contain results of Richardson extrapolation
3) Decrease in magnitude with grid refinement
4) Not be overly conservative as to be unusable

* |f fine grid results fall outside predicted error bars, it potentially
indicates new flow features result from grid refinement

* |f test data falls outside predicted solution and error bars, it
potentially indicates a deficiency in physical modeling
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Lift Characteristics Near Stall

Maximum C, predicted to occur at 32 degrees for each grid
Stall point is mesh dependent

— Medium grid stalls first just beyond 34 degrees
— Coarse and fine grids both stall at ~¥35 degrees

— Separation patterns on coarse, fine grids are quite different
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FUN3D Results, a=28°
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FUN3D Results, a=32°
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FUN3D Results, a=34°
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FUN3D Results, a=35°
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FUN3D Results, a=36°
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Stall Patterns

a = 35°

o =36°

a) Coarse grid b) Medium grid ¢) Fine grid
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ETE Results, a=28°
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ETE Results, a=32°
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ETE Results, a=34°
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ETE Results, a=35°
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ETE Results, a=36°
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USM3D ETE Results, a=28°
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Assessing Solution Pairs

* Error Transport model cannot account for absence or presence of a

flow structure due to grid refinement

— e.g., stall vs. no stall

* Means of quantifying similarly between solution pairs needed to assess
if sequence is near monotonic range — otherwise Richardson

extrapolation and ETE are not applicable

— e.g., USM3D solution sequences beyond
30 degrees (Pandya et al., 2011)
* Approach explored based on intersection
of metric ellipsoids

— Metric formed using Hessian matrix of
2" derivatives

— Eigenanalysis extracts principal directions
and length scales associated with flowfield
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Metric Intersections

* Metric tensors represented as 3D ellipsoid

* Intersection of ellipsoids can indicate scaling and alignment
— Consider M1 to be coarse solution metric, M2 fine solution metric

— Solution should sharpen with mesh refinement: principal directions are
nearly aligned and length scales are merely scaled from coarse to fine grid

— Misalignment between solution pairs would result in intersected volume
that is less than volume of metric ellipsoid M2

™~
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« Examine the volume fraction ¢ =V _ /V2

@—__‘CRAF T Tech

30t Applied Aerodynamics Conference Cavallo and Feldman



Similar Solution Pair, a=28°

* Preliminary results comparing Coarse (top) and Medium (bottom) grid
solutions from USM3D

e Solution pair is similar and volume fraction is consistent with this

« “Spottiness” of plot believed related to data transfer/interpolation
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Dissimilar Solution Pair, a=32°

* At 32 degrees, the Coarse USM3D solution predicts stall, while the
Medium grid predicts attached flow

* Volume fraction from metric intersection comparing the solutions picks
up this disparity well

» Still exploring how we can improve method and use this information
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Conclusions and Lessons Learned

* Investigated grid refinement effects up to and beyond maximum C,
— Angle of peak C, itself is grid-independent (~32 degrees)
— Onset of stall, separated flow structures exhibit mesh dependent behavior
— Inboard vs. outboard evolution of separation
* High alpha cases were a considerable challenge for Error Transport
Model’s ability to capture grid-induced increments

— Generally, predicted errors in C, were quite large for all medium grid
FUN3D solutions

— Clearly, accuracy concerns must be revisited for these cases
— Cell-centered ETE solution for USM3D shows promise

e Path towards quantifying solution similarity established
— Method based on computing metric tensor intersections
— Preliminary application on USM3D sequence
— Method needs further development and testing
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