

Numerical Simulation of DLR-F11 High Lift Configuration from HiLiftPW-2 using STAR-CCM+

Jeremy Hanke, Prashanth Shankara, and Deryl Snyder CD-adapco AIAA Science and Technology Forum and Exposition 2014 13-17 January 2014 | National Harbor, MD

Outline

Motivation

Computational Methodology

- Mesh
- Flow Solver

➢ Results

- Grid Refinement Results (Case 1)
- Effect of Re and flap/slat tracks (Case 2)
- Effect of Turbulence Model Choice (Case 2)

Conclusions and Future Work

Motivation

Provide a STAR-CCM+ contribution to the 2nd AIAA CFD High-Lift Prediction Workshop (HiLiftPW-2)

- Original intent to submit STAR-CCM+ predictions for HiLiftPW-2 held in June 2013
- Could not complete analysis for submission
- Completed work in late 2013
 - Followed general HiLiftPW-2 guidelines for analysis to provide for maximum compatibility with workshop submissions
 - Performed an additional analysis of turbulence model choice

Mesh Generation

Meshes generated using STAR-CCM+ proprietary meshers

- Unstructured polyhedral mesh
- Advanced prism layer mesher for boundary layers
- Refinements made using edge, surface, and volumetric controls
- Rapid refinement and design changes possible with little user input
- Gridding guidelines provided for HiLiftPW-2 generally followed, with some necessary deviations
 - As noted by some HiLiftPW-2 participants, gridding guidelines difficult to achieve for unstructured grids in practical application
 - Engineering knowledge based on previous experience, experimental data applied, especially for Case 2 (w/tracks) grid
 - Mesh refined behind slat tracks, as HiLiftPW-1 results showed large effect
 - Mesh refined behind trailing edge of main section due to stall character of experimental data indicating trailing edge stall
 - Surface CAD modified near flap/fuselage junction and flap track fairing leading edge to remove sliver cell geometry in those areas

Mesh Generation

4 meshes generated

- Coarse, Medium, Fine for Case 1 (no tracks)
 - Generally followed gridding guidelines where possible
- Case 2 mesh with slat/flap tracks
 - Generally representative of Medium mesh density from HiLiftPW-2
 - Additional refinements for slat track wakes, main section trailing edge, etc included.

	Case 1 (no slat/flap tracks)			Case 2 (w/tracks)
	Coarse	Medium	Fine	
# of Cells	21.6M	32.9M	46.4M	46.6M
# of Prism Layers	15	18	21	18
TE Cells	3	4	6	4

Volume mesh generation on the order of a few days

- Coarse and Fine grids generated by changing only a few parameters
- Geometry changes possible with minimal user input

Mesh – Case 1 Medium

Mesh Comparison – Case 1

Surface Mesh – Case 2 (w/tracks)

Volume Mesh – Case 2 (w/tracks)

Computational Methodology

Density-based, coupled, 3D Navier-Stokes flow solver

- 2nd order upwind spatial discretization for convection, and 2nd order central discretization for diffusion
- Algebraic MultiGrid (AMG) acceleration
- RANS turbulence modeling with k-ω SST or Standard k-ε (SKE)
 - Durbin scale limiter* with realizability coefficient of 1.2 used with SKE
- Liou's AUSM+ flux-vector splitting scheme**
- Low-Mach preconditioning

Initial conditions

- Grid Sequencing Initialization (GSI) used to generate higher quality initial solution for some cases
- Converged solution at previous α used as initial condition for higher α simulations

Boundary conditions provided by HiLiftPW-2

M = 0.175, Re = 15.1x10⁶ and 1.35x10⁶

*Durbin, P. A., "On the k-e Stagnation Point Anomaly", *Int. J. Heat and Fluid Flow,* 17, pp. 89-90, 1996. **Liou, M.-S. 1996. "A Sequel to AUSM: AUSM+", *J. Comput. Phys.*, 129: 364-382. Results - Grid Resolution Study (C1) **Force and Moment Predictions**

> Entire alpha sweep run on Medium grid

- No evidence of stall up to 21°
- Good agreement in trends and values before stall for C_{I} , C_{D}

Experiment

15

10

5

Little difference between grids

0.6

0.0

Results - Grid Resolution Study (C1) F&M Grid Convergence

Grid convergence better for 7° than 16° results

- Further, more systematic grid refinement would be needed for definitive conclusion
 - Similar results shown for many participants in HiLiftPW-2

Results – C_p Distributions Case 1 Medium Grid, $\alpha = 7^{\circ}$

◆ EXP Slat ■ Exp Main ▲ Exp Flap ▲ STAR-CCM+ Fine ◆ STAR-CCM+ Medium ● STAR-CCM+ Coarse

Major Findings – Case 1

Reasonable prediction of F&M trends until near stall

- No stall predicted through α = 21°
- Simulations do not capture behavior of C_L or C_m above 16°
- C_p distributions match experimental measurements for most stations and angles
 - Predictions generally worse on flap than main or slat sections
 - Predictions near stall show less separation than experiment

Negligible effect of grid resolution on F&M data and C_p distributions

- F&M and C_p predictions nearly identical for all grids
- Further refinement likely necessary for grid independence

Results – Case 2 (w/tracks), SST Force and Moment Predictions

- Excellent agreement with experiment in trends, values
- Stall predicted for both high and low Re around 20°
 - More abrupt stall predicted than measured
- C_L underpredicted for both Re, but more noticeably at low Re

Results - C_p Distributions Case 2 (w/tracks), SST, $\alpha = 20^{\circ}$

Results - Surface Streaklines Case 2 (w/tracks), SST

Results - Streamlines Case 2 (w/tracks), SST

Effect of Slat/Flap Tracks (SST)

Simulations with slat/flap tracks show separation at ~75% span around 20°

Effect of Reynolds Number Case 2 (w/tracks), SST

1.0

Angle of Attack (degrees)

-0.8

Angle of Attack (degrees)

0.0

Angle of Attack (degrees)

Major Findings – Case 2 SST Results

Reasonable prediction of stall characteristics

- Onset of stall predicted at similar angle to experiment
- More abrupt stall predicted than measured, especially for high Re
- Max C_L predicted within 2.7% for high Re, 7.4% for low Re
- Excellent agreement in trends for C_L, C_D reasonable agreement for C_M
- C_p distributions match experimental measurements for most stations and angles
 - Early separation present near stall at 75% span

Slat/flap tracks shown to be critically important for accurate modeling near separation

- Internal CD-adapco experience for performance racing vehicles has shown promising results using the SKE turbulence model with the Durbin limiter realizability constraint
 - Similar flow regimes as HiLiftPW-2
 - Especially good results for separation prediction
 - Better convergence behavior than SST and less unsteadiness

Results – Case 2 (w/tracks) Turbulence Model Comp, High Re

- SKE model shows much better agreement with experiment in trends, values than SST model
- Stall characteristics predicted more accurately with SKE model
 - Max C_L off by 0.83% (SKE) vs 2.7% (SST)

5

10

Experiment
STAR-CCM+ SST
STAR-CCM+ SKE

15

Angle of Attack (degrees)

20

C_D overpredicted more using SKE

Similar behavior seen at low Re 0.5

0.0

Results - C_p Distributions Case 2 (w/tracks), SKE, $\alpha = 20^{\circ}$

Effect of Turbulence Model, High Re

Effect of Turbulence Model, Low Re

Results - Streaklines Experimental Comparison at Low Re

Future Work

Investigate effect of transition model instead of fully turbulent

- Expected to be especially important for low Re simulations
- Investigate effect of SST curvature correction term
- Simulate full experimental configuration (Case 3) with pressure tube bundles
 - Additional geometry could have large effect on stall behavior, location
 - STAR-CCM+ allows for rapid turnaround for geometry changes

> Investigate effect of quadratic or cubic constitutive relations

Conclusion

STAR-CCM+ predictions compare well with experimental measurements

- Streaklines and pressure distributions match well except where separation predicted
- Predicted trends and values of F&M coefficients compared well for both SST and SKE models
- SKE predictions closer to experimental data, especially near stall
- Effect of Reynolds number accurately predicted with both turbulence models
- STAR-CCM+ designed for rapid CAD to solution and efficient investigation of design changes
- Results compare well to HiLiftPW-2 submissions
 - STAR-CCM+ results fall well within data submitted to HiLiftPW-2
 - Many similar behaviors noted by other researchers

Questions?

Backup Slides

Results – C_p Distributions Case 1 Medium Grid, $\alpha = 16^{\circ}$

◆ EXP Slat ■ Exp Main ▲ Exp Flap ▲ STAR-CCM+ Fine ◆ STAR-CCM+ Medium ● STAR-CCM+ Coarse

Results - C_p Distributions Case 2 (w/tracks), SKE, $\alpha = 16^{\circ}$

Results - C_p Distributions Case 2 (w/tracks), SST, $\alpha = 16^{\circ}$

Effect of Turbulence Model – PS08

Cp Distribution at PS08: $alpha = 18_5 deg$.

PIV Velocity Profile Comparisons Low Re, SST model

PIV Velocity Profile Comparisons Low Re, SKE model

