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Introduction 

Prediction of high-lift flows is challenging 
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Wing tip vortex 



Two parts to this talk 

• Brief summary of HiLiftPW-1 

– Serves as an overview to the Special Sessions 

 

• Rumsey/Lee-Rausch recent work on Trap Wing 

– Corresponding to AIAA paper 2012-2843 
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Brief Summary of HiLiftPW-1 
 



Timeline 
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Summary of HiLiftPW-1 

• Held Summer 2010 
• Open series of international High Lift Prediction 

Workshops (HiLiftPW) 
• Long-term objectives of workshop series 

– Assess current prediction capability 
– Develop modeling guidelines 
– Advance understanding of physics 
– Enhance CFD prediction capability for design and 

optimization 
– Provide impartial forum 
– Identify areas needing additional research & development 

• Looking for: overall collective results, trends, and 
outliers 
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NASA Trapezoidal Wing 

• In Langley 14x22 ft Wind Tunnel 
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HiLiftPW-1 participant statistics 
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21 groups 
39 entries 
15 different CFD codes 



HiLiftPW-1 test cases 

• Focused on two configurations: 
– Config 1 (slat 30 flap 25) 

– Config 8 (slat 30 flap 20)* 

• Grid convergence studies 

• Optional: effect of brackets 
 

• All cases “free air”, fully turbulent 

• Compared against 14x22 data corrected to 
free air conditions 
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*Note: Config 8 not discussed here; see J Aircraft 48(6):2068-2079, 2011  



“Clean” vs. brackets 
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Typical result 
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Configuration 1, medium grid (no brackets) 

Including brackets makes comparisons worse 



Summary of all results 
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-In the collective, CFD 
tended 
to under-predict lift, 
drag, 
and moment 
magnitude 
 
-There were CFD 
outliers, 
especially at higher 
alphas 

Configuration 1, medium grid (no brackets) 



Summary of all results 
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-In the collective, CFD 
tended 
to under-predict lift, 
drag, 
and moment 
magnitude 
 
-There were CFD 
outliers, 
especially at higher 
alphas 
 
-Some problems at 
high alphas due to 
code sensitivity to 
initial conditions 

Configuration 1, medium grid (no brackets) 



Summary of all results 
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-In the collective, CFD 
tended 
to under-predict lift, 
drag, 
and moment 
magnitude 
 
-There were CFD 
outliers, 
especially at higher 
alphas 
 
-We now think that 
including transition 
can have big effect on 
moment 

Configuration 1, medium grid (no brackets) 



Predictions near the wing tip 
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Predictions near the wing tip 
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Alpha=280, configuration 1 

Typical thin-layer N-S Typical full N-S 



Statistical analysis 
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Coarse grid Medium grid Fine grid 

Helpful to identify outliers 



Statistical analysis 
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Coarse grid Medium grid Fine grid 

Helpful to identify outliers 

UT5 grid SST model (fully turbulent) 



Statistical analysis 
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Coarse grid Medium grid Fine grid 

Helpful to identify outliers 

SST model (fully turbulent) 

SST model (w transition) 



Subsequent study at FOI 
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Including brackets and transition (SA model) 
From AIAA-2011-3009 (Eliasson et al) 

Including transition increases lift and decreases moment 
(both in better agreement with experiment) 



Some conclusions from Trap Wing 
studies to date 

• Wing tip region difficult to predict 
– CFD codes have trouble agreeing with experiment 

– CFD codes have trouble agreeing with each other 

– Additional targeted grid refinement probably required 

– Thin-layer assumption is particularly poor 

• Refining grid typically increases lift 

• Including brackets decreases lift 

• Accounting for transition is particularly important 
– Increases lift, decreases moment 

– Studies by Steed (ANSYS-CFX), Eliasson (FOI), Fares (Exa) 
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Cartoon of general CFD behavior 

23 (schematic representation) 



Cartoon of general CFD behavior 
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Cartoon of general CFD behavior 

25 (schematic representation) 



Cartoon of general CFD behavior 

26 (schematic representation) 

You may get 
the right 
answer for the 
wrong reason 



Why Hold Special Sessions? 

• Build on lessons learned from HiLiftPW-1 

– Same Trap Wing configuration 

– Is there more we can learn? 

– Can we do better? 

– Make use of new velocity probe information 

• Provide forum for new groups to participate 

– Many of presenters are new to HiLiftPW 
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NASA Trapezoidal Wing 
Computations Including Transition 

and Advanced Turbulence Modeling  
 

AIAA Paper 2012-2843 



Current contribution 

• Verification of transition influence 

• Investigation of grid and model effect on wake 
velocity profile predictions 

• Influence of turbulence model rotation and 
curvature corrections 
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Results 

• Transition was implemented in CFL3D and FUN3D 
– Langtry-Menter                SST model (4-eqn model) 

• Very effective engineering tool; good results overall 

• Yielded transition regions similar to those from eN method in most 
regions over the wing 

• Agreed best with experimental velocity profiles 

• Downside: transition equations can be difficult to converge 

– By zeroing out turbulent production in specified regions 
(FUN3D) 
• Effective at AoA=13 deg; early separation at high AoA 

• Including transition improved predictions significantly 
– Reduced upper surface flap separation 

– Increased lift 
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 Re



Comparison of transition prediction 
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AoA=13 deg 

Color contours:                     SST model (blue laminar, red turbulent) 
Dots: eN method (Eliasson et al) 



 Re



Results 

• Transition was implemented in CFL3D and FUN3D 
– Langtry-Menter                SST model (4-eqn model) 

• Very effective engineering tool; good results overall 

• Yielded transition regions similar to those from eN method in most 
regions over the wing 

• Agreed best with experimental velocity profiles 

• Downside: transition equations can be difficult to converge 

– By zeroing out turbulent production in specified regions 
(FUN3D) 
• Effective at AoA=13 deg; early separation at high AoA 

• Including transition improved predictions significantly 
– Reduced upper surface flap separation 

– Increased lift 
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Velocity profiles 
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Effect of transition on velocity profiles 
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AoA=28 deg, structured SX1/UX9 grid (no brackets) 

Main element, 83% span Flap forward element, 83% span 



Results 

• Transition was implemented in CFL3D and FUN3D 
– Langtry-Menter                SST model (4-eqn model) 

• Very effective engineering tool; good results overall 

• Yielded transition regions similar to those from eN method in most 
regions over the wing 

• Agreed best with experimental velocity profiles 

• Downside: transition equations can be difficult to converge 

– By zeroing out turbulent production in specified regions 
(FUN3D) 
• Effective at AoA=13 deg; early separation at high AoA 

• Including transition improved predictions significantly 
– Reduced upper surface flap separation 

– Increased lift 
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Results 

• Transition was implemented in CFL3D and FUN3D 
– Langtry-Menter                SST model (4-eqn model) 

• Very effective engineering tool; good results overall 

• Yielded transition regions similar to those from eN method in most 
regions over the wing 

• Agreed best with experimental velocity profiles 

• Downside: transition equations can be difficult to converge 

– By zeroing out turbulent production in specified regions 
(FUN3D) 
• Effective at AoA=13 deg; early separation at high AoA 

• Including transition improved predictions significantly 
– Reduced upper surface flap separation 

– Increased lift 
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Results 

• Transition was implemented in CFL3D and FUN3D 
– Langtry-Menter                SST model (4-eqn model) 

• Very effective engineering tool; good results overall 

• Yielded transition regions similar to those from eN method in most 
regions over the wing 

• Agreed best with experimental velocity profiles 

• Downside: transition equations can be difficult to converge 

– By zeroing out turbulent production in specified regions 
(FUN3D) 
• Effective at AoA=13 deg; early separation at high AoA 

• Including transition improved predictions significantly 
– Reduced upper surface flap separation 

– Increased lift, decreased moment 
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AoA=13 deg 
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Velocity contours 
near 85% span 

Velocity contours 
near 85% span 

u/U=1.9 

0 



 ReSST SST 

(no brackets) 
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CFL3D results (no brackets) 

Lift and moment predictions 



Results 

• Grid resolution issues 

– Unstructured grids mis-predicted wake profiles 
(too diffused) 

– Automatic grid adaption would be helpful 

• Rotation and curvature corrections in 
turbulence models helped 

– Increased lift (reduced upper surface pressures) 

– Improved resolution of wing tip vortex 
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Main element, 83% span Flap forward element, 83% span 

Effect of grid on velocity profiles 
AoA=28 deg (no brackets) 



Comparison of grid section cuts 
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Better wake resolution 

Structured grid SX1/UX9 Unstructured grid UH16 

Near 85% span 
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Main element, 83% span Flap forward element, 83% span 

Effect of brackets and transition on 
velocity profiles 

AoA=28 deg, unstructured UH16 grid 



Results 

• Grid resolution issues 

– Unstructured grids mis-predicted wake profiles 
(too diffused) 

– Automatic grid adaption would be helpful 

• Rotation and curvature corrections in 
turbulence models helped 

– Increased lift (reduced upper surface pressures) 

– Improved resolution of wing tip vortex 
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Rotation/curvature corrections 
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• Tested: SA-R, SA-RC, SST-RC,                SST-RC 
• Example of effect of SA vs. SA-RC: 



 Re

AoA=13 deg (with brackets) 



Rotation/curvature corrections 
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• Tested: SA-R, SA-RC, SST-RC,                SST-RC 
• Example of effect of SA vs. SA-RC: 



 Re

Still getting 
poor 
predictions 
near the 
wing tip 

AoA=13 deg (with brackets) 



Rotation/curvature corrections 
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SA SA-RC 

Peak vortex strength increased over 20% 

Vorticity contours 



Conclusions 

• Brief summary of HiLiftPW-1 given 
• Brief summary of recent NASA LaRC results given 
• Predicting CL,max accurately for the “right” reasons is 

still a challenge for CFD 
• Many pieces have influence: 

– Transition 
– Turbulence modeling (e.g., RC effects) 
– Geometric fidelity (e.g., brackets) 
– Grid resolution, both global and local (e.g., tip vortex and 

wake regions) 

• Upcoming talks this session and tomorrow AM 
– Many Trap Wing studies: including transition, separation, 

unsteady, adaptive, and uncertainty quantification 
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Comparison with brackets 
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FOI study (SA) Current FUN3D results 



Conclusions 

• Brief summary of HiLiftPW-1 given 
• Brief summary of recent NASA LaRC results given 
• Predicting CL,max accurately for the “right” reasons is 

still a challenge for CFD 
• Many pieces have influence: 

– Transition 
– Turbulence modeling (e.g., RC effects) 
– Geometric fidelity (e.g., brackets) 
– Grid resolution, both global and local (e.g., tip vortex and 

wake regions) 

• Upcoming talks this session and tomorrow AM 
– Many Trap Wing studies: including transition, separation, 

unsteady, adaptive, and uncertainty quantification 
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