NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling

C. L. Rumsey and E. M. Lee-Rausch NASA Langley Research Center Computational AeroSciences Branch

30th AIAA Applied Aerodynamics Conference, High Lift Special Session June 25-28, 2012, New Orleans

Introduction

Prediction of high-lift flows is challenging

Introduction

Prediction of high-lift flows is challenging

possible boundary layer separation

Two parts to this talk

- Brief summary of HiLiftPW-1
 - Serves as an overview to the Special Sessions
- Rumsey/Lee-Rausch recent work on Trap Wing — Corresponding to AIAA paper 2012-2843

Brief Summary of HiLiftPW-1

Timeline

Summary of HiLiftPW-1

- Held Summer 2010
- Open series of international High Lift Prediction Workshops (HiLiftPW)
- Long-term objectives of workshop series
 - Assess current prediction capability
 - Develop modeling guidelines
 - Advance understanding of physics
 - Enhance CFD prediction capability for design and optimization
 - Provide impartial forum
 - Identify areas needing additional research & development
- Looking for: overall collective results, trends, and outliers

NASA Trapezoidal Wing

• In Langley 14x22 ft Wind Tunnel

HiLiftPW-1 participant statistics

- 21 groups
- 39 entries
- 15 different CFD codes

HiLiftPW-1 test cases

- Focused on two configurations:
 - Config 1 (slat 30 flap 25)
 - Config 8 (slat 30 flap 20)*
- Grid convergence studies
- Optional: effect of brackets
- All cases "free air", fully turbulent
- Compared against 14x22 data corrected to free air conditions

*Note: Config 8 not discussed here; see J Aircraft 48(6):2068-2079, 2011

"Clean" vs. brackets

Typical result Configuration 1, medium grid (no brackets)

Including brackets makes comparisons worse

Summary of all results Configuration 1, medium grid (no brackets)

-In the collective, CFD tended to under-predict lift, drag, and moment magnitude

-There were CFD outliers, especially at higher alphas

Summary of all results Configuration 1, medium grid (no brackets)

-In the collective, CFD tended to under-predict lift, drag, and moment magnitude

-There were CFD outliers, especially at higher alphas

-Some problems at high alphas due to code sensitivity to initial conditions

Summary of all results Configuration 1, medium grid (no brackets)

-In the collective, CFD tended to under-predict lift, drag, and moment magnitude

-There were CFD outliers, especially at higher alphas

-We now think that including transition can have big effect on moment

Predictions near the wing tip

Predictions near the wing tip Alpha=28⁰, configuration 1

Statistical analysis

Helpful to identify outliers

Statistical analysis

Statistical analysis

Subsequent study at FOI

Including transition increases lift and decreases moment (both in better agreement with experiment)

Some conclusions from Trap Wing studies to date

- Wing tip region difficult to predict
 - CFD codes have trouble agreeing with experiment
 - CFD codes have trouble agreeing with each other
 - Additional targeted grid refinement probably required
 - Thin-layer assumption is particularly poor
- Refining grid typically increases lift
- Including brackets decreases lift
- Accounting for transition is particularly important
 - Increases lift, decreases moment
 - Studies by Steed (ANSYS-CFX), Eliasson (FOI), Fares (Exa)

Why Hold Special Sessions?

- Build on lessons learned from HiLiftPW-1
 - Same Trap Wing configuration
 - Is there more we can learn?
 - Can we do better?
 - Make use of new velocity probe information
- Provide forum for new groups to participate
 - Many of presenters are new to HiLiftPW

NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling

AIAA Paper 2012-2843

Current contribution

- Verification of transition influence
- Investigation of grid and model effect on wake velocity profile predictions
- Influence of turbulence model rotation and curvature corrections

- Transition was implemented in CFL3D and FUN3D
 - Langtry-Menter γRe_{ρ} SST model (4-eqn model)
 - Very effective engineering tool; good results overall
 - Yielded transition regions similar to those from e^N method in most regions over the wing
 - Agreed best with experimental velocity profiles
 - Downside: transition equations can be difficult to converge
 - By zeroing out turbulent production in specified regions (FUN3D)
 - Effective at AoA=13 deg; early separation at high AoA
- Including transition improved predictions significantly
 - Reduced upper surface flap separation
 - Increased lift

Comparison of transition prediction

- Transition was implemented in CFL3D and FUN3D
 - Langtry-Menter γRe_{θ} SST model (4-eqn model)
 - Very effective engineering tool; good results overall
 - Yielded transition regions similar to those from e^N method in most regions over the wing
 - Agreed best with experimental velocity profiles
 - Downside: transition equations can be difficult to converge
 - By zeroing out turbulent production in specified regions (FUN3D)
 - Effective at AoA=13 deg; early separation at high AoA
- Including transition improved predictions significantly
 - Reduced upper surface flap separation
 - Increased lift

Velocity profiles

Effect of transition on velocity profiles

AoA=28 deg, structured SX1/UX9 grid (no brackets)

- Transition was implemented in CFL3D and FUN3D
 - Langtry-Menter γRe_{θ} SST model (4-eqn model)
 - Very effective engineering tool; good results overall
 - Yielded transition regions similar to those from e^N method in most regions over the wing
 - Agreed best with experimental velocity profiles
 - Downside: transition equations can be difficult to converge
 - By zeroing out turbulent production in specified regions (FUN3D)
 - Effective at AoA=13 deg; early separation at high AoA
- Including transition improved predictions significantly
 - Reduced upper surface flap separation
 - Increased lift

• Transition was implemented in CFL3D and FUN3D

- Langtry-Menter
 SST model (4-eqn model)
 - Very effective engineering tool; good results overall
 - Yielded transition regions similar to those from e^N method in most regions over the wing
 - Agreed best with experimental velocity profiles
 - Downside: transition equations can be difficult to converge
- By zeroing out turbulent production in specified regions (FUN3D)
 - Effective at AoA=13 deg; early separation at high AoA
- Including transition improved predictions significantly
 - Reduced upper surface flap separation
 - Increased lift

- Transition was implemented in CFL3D and FUN3D
 - Langtry-Menter
 SST model (4-eqn model)
 - Very effective engineering tool; good results overall
 - Yielded transition regions similar to those from e^N method in most regions over the wing
 - Agreed best with experimental velocity profiles
 - Downside: transition equations can be difficult to converge
 - By zeroing out turbulent production in specified regions (FUN3D)
 - Effective at AoA=13 deg; early separation at high AoA
- Including transition improved predictions significantly
 - Reduced upper surface flap separation
 - Increased lift, decreased moment

Lift and moment predictions

CFL3D results (no brackets)

- Grid resolution issues
 - Unstructured grids mis-predicted wake profiles (too diffused)
 - Automatic grid adaption would be helpful
- Rotation and curvature corrections in turbulence models helped
 - Increased lift (reduced upper surface pressures)
 - Improved resolution of wing tip vortex

Effect of grid on velocity profiles

AoA=28 deg (no brackets)

Comparison of grid section cuts

Near 85% span

Effect of brackets and transition on velocity profiles

AoA=28 deg, unstructured UH16 grid

Main element, 83% span

Flap forward element, 83% span

- Grid resolution issues
 - Unstructured grids mis-predicted wake profiles (too diffused)
 - Automatic grid adaption would be helpful
- Rotation and curvature corrections in turbulence models helped
 - Increased lift (reduced upper surface pressures)
 - Improved resolution of wing tip vortex

Rotation/curvature corrections

- Tested: SA-R, SA-RC, SST-RC, $\gamma \text{Re}_{\theta}$ SST-RC
- Example of effect of SA vs. SA-RC:

Rotation/curvature corrections

- Tested: SA-R, SA-RC, SST-RC, $\gamma \text{Re}_{\theta}$ SST-RC
- Example of effect of SA vs. SA-RC:

Rotation/curvature corrections

Vorticity contours

Peak vortex strength increased over 20%

Conclusions

- Brief summary of HiLiftPW-1 given
- Brief summary of recent NASA LaRC results given
- Predicting C_{L,max} accurately for the "right" reasons is still a challenge for CFD
- Many pieces have influence:
 - Transition
 - Turbulence modeling (e.g., RC effects)
 - Geometric fidelity (e.g., brackets)
 - Grid resolution, both global and local (e.g., tip vortex and wake regions)
- Upcoming talks this session and tomorrow AM
 - Many Trap Wing studies: including transition, separation, unsteady, adaptive, and uncertainty quantification

Comparison with brackets

Conclusions

- Brief summary of HiLiftPW-1 given
- Brief summary of recent NASA LaRC results given
- Predicting C_{L,max} accurately for the "right" reasons is still a challenge for CFD
- Many pieces have influence:
 - Transition
 - Turbulence modeling (e.g., RC effects)
 - Geometric fidelity (e.g., brackets)
 - Grid resolution, both global and local (e.g., tip vortex and wake regions)
- Upcoming talks this session and tomorrow AM
 - Many Trap Wing studies: including transition, separation, unsteady, adaptive, and uncertainty quantification