Computational Studies of the NASA High-Lift Trap Wing Using Structured and Unstructured Grid Solvers

Mitsuhiro Murayama and Yasushi Ito
Aviation Program Group, JAXA

Kentaro Tanaka
Ryoyu Systems Co., Ltd.

Kazuomi Yamamoto
Aviation Program Group, JAXA

AIAA 2012-2844
Outline

- Background
 - Lessons learned from HiLiftPW-1

- Objectives

- Grid effects
 - Unstructured hybrid mesh generation w/ suppressed marching direction method at concave corners

- Prediction of boundary layer transitions
 - LSTAB based on e^N method

- Flow solvers & flow conditions

- Results
 - Grid convergence of CL & CD
 - Transition prediction

- Concluding remarks
Background

- 1st AIAA CFD High Lift Prediction Workshop in 2010
 - NASA Trap wing: Full-span slat & flap, simplified wing tip
 - Summary by Rumsey et al. (AIAA 2011-0939)
- Identified areas needing additional attention for CFD
 - Outboard flap trailing edge region
 - Higher variability among CFD
 - Effect of initial conditions on CFD solutions
 - Bluff wing tip region
 - Vortices from the slat & wing tip grow & burst over the wing
 - Tendency to under-predict C_p suction levels near the wing tip
 - Accurate prediction of behavior of the vortices, their breakdown & their interaction over the wing may be important
 - Influence of transition

Cp at 98% span

Flap Cp in span-wise

- Large loss of Pt
- Grid dependency
- Turbulent model dependency

$\alpha = 28^\circ$
Comparison of flap SOB separation (\(\alpha = 13^\circ\), Medium)

- CFD simulations w/ 2 solvers in JAXA
 - TAS code for unstructured grids
 - UPACS for structured grids
- Flap SOB flow separation by UPACS showing better agreement with exp.
- Due to difference in corner grid topology?
 - Str-JAXA grids are much finer

Exp.
\(\alpha\)-uncorr = 12°
\(\alpha\)-corr ~ 15.5°
Comparison of SOB Separation in DPW-3

Murayama & Yamamoto, AIAA 2007-0258

- Orthogonal mesh is more independent of approx methods in viscous term
 - Higher-quality elements
 - Less artificial viscosity
- Similar approach in hybrid meshing?
New Hybrid surface and volume meshing method

To create good-quality semi-structured surface quads around selected ridges with minimum user-interventions
- Advancing-layers type method & special treatment at concave corners

To improve the hybrid volume meshing method so that good-quality elements can be easily created at concave corners
- Suppressed marching direction method

Wing tip

Around TE

New approach
2.24 M nodes

Reference
4.46 M nodes
Comparison of flap SOB separation ($\alpha = 13^\circ$, Medium)

- Dependency of the separation to turbulent models
 - Yamamoto et al., AIAA-2012-2895 (11:30 AM, Tuesday, June 26)
Influence of laminar-to-turbulent transition

- Trend of under-predicted C_L especially at $\alpha = 13^\circ$
 - Several reports importance of including the transition for better comparison w/ exp
- Transition prediction method developed in JAXA will be evaluated

Grid convergence from summary of HiliftPW-1 (AIAA 2011-0939)
Objectives

- We have recently performed supplementary computational studies for the Trap Wing model

 (1) Grid effects
 - To compare results with JAXA structured grids & several unstructured hybrid grids by different mesh generators
 - Including new hybrid meshes with the suppressed marching direction method
 - To investigate differences in the wing tip region and the side-of-body region

(2) Prediction of boundary layer transitions
- To evaluate a transition prediction method based on e^N method
(1) Grid effects

- Comparison of JAXA structured grids and several unstructured hybrid grids by different mesh generators
- To investigate the wing tip region and the side-of body region

Grids used in this study

- JAXA multi-block structured grids using Gridgen, Str-OneTo-One-E (SX12-JAXA)
 - Coarse, Medium, Fine
- JAXA unstructured hybrid grids, Unst-Mixed-Nodecentered-C using MEGG3D (UH16-JAXA)
 - Coarse, Medium, Fine
- Committee-provided Uwyo unstructured hybrid grids, Unst-Mixed-FromTet-Nodecentered-A-v1 using VGRID
 - Coarse, Medium, Fine
- Committee-provided DLR unstructured hybrid grids, Unst-Mixed-FromTet-Nodecentered-B using Solar
 - Coarse, Medium
- New JAXA unstructured hybrid grids, Unst-Mixed-Nodecentered-JAXA New using MEGG3D
 - Coarse, Medium-coarse
JAXA multi-block structured grids (SX12-JAXA, Gridgen)

- O-O grid topology near the model surface
 - To guarantee better orthogonality within the boundary layer
- C-O grid topology at outward
- **O-H grid topology** at wing-body junction
 - High-density grid at the corner of wing-body junction

441 blocks

Coarse (12M) Medium (37M) Fine (124M)
JAXA unstructured hybrid grids (UH16-JAXA, MEGG3D)

- Surface grid (Isotropic triangles)
 - Direct advancing front method by Ito et al.
- Volume grid (Tetrahedra, Prisms, Pyramids)
 - Delauney (tetra) → insertion of prismatic layer (prism)
- **Extruded prisms** on no-slip walls, including at wing-body junction

Committee-provided unstructured hybrid grids

- University of Wyoming using VGRID
 - Unst-Mixed-FromTet-Nodecentered-A-v1: Unst-MFTNAv1
- DLR using Solar
 - Unst-Mixed-Nodecentered-B-v1: Unst-MNBv1
- Comparison of medium grids
 - Extruded elements at wing-body junction

Unst-JAXA grid (UH16) (28M)
Unst-MFTNAv1 grid (11M)
Unst-MNBv1 grid (37M)

- Thinner layers at corner
- Less flap resolution
- Less nodes
New JAXA unstructured hybrid grids (MEGG3D)

- **Surface grid**
 - Advancing-layers type method w/ special treatment at concave corners
 - Direct advancing front method for surface triangulation
- **Volume grid**
 - Advancing-layers type method w/ suppressed marching direction method
 - Advancing front method for tetrahedral meshing
- **Orthogonal hexes** at wing-body junction

Coarse (18M) Medium-coarse (24M)
Numerical methods & flow conditions

- Modification to S-A model (SA-noft2-R (Crot=1)) to suppress excessive eddy viscosity after separation
 - w/o trip related terms
 - w/ modification to production term: $S = \min(\sqrt{2\Omega^2}, \sqrt{2S^2})$
- Restart from result at lower α to obtain results at higher α
- Slat & flap setting: Config 1
- No slat & flap brackets included
- $M = 0.2$, $Re = 4.3 \times 10^6$, $T = 520^\circ R$ & $\alpha = 13^\circ, 28^\circ$
Grid convergence of C_L

- Good agreement among CFD results on finer grids
- Good correlation between UPACS for SX12-JAXA & TAS for UH16-JAXA on expected grid converged solutions, $C_L(N\rightarrow\infty)$
- Similar values & trends by JAXA-New & UH16-JAXA

- $\alpha = 13^\circ$
 - Mild slopes of grid convergence
 - Good agreement among CFD results, but lower C_L than exp.

- $\alpha = 28^\circ$
 - More variations and steeper slopes of grid convergence
 - Higher $C_L(N\rightarrow\infty)$ than exp.

N (grid points) $\approx \infty \quad 100M \quad 32M \quad 11M \quad 6M \quad 4M$
Comparison of flow separation on flap ($\alpha = 13^\circ$, Medium)

CFD results show larger flap TE flow separation than exp.
\rightarrow CFD: fully turb, Exp: free transition

α-uncorr = 12°, α-corr ~ 15.5°
Comparison of flow separation on flap ($\alpha = 13^\circ$, Medium)

CFD results show larger flap TE flow separation than exp.

\rightarrow CFD: fully turb, Exp: free transition

α-uncorr = 12$^\circ$, α-corr \sim 15.5$^\circ$
Grid convergence of C_D

- Similar trends with CL
- Reasonable agreement among CFD results on finer grids at $\alpha = 13^\circ$
- Good correlation between UPACS for SX12-JAXA & TAS for UH16-JAXA on expected grid converged solutions, $C_D(N\to\infty)$
- Similar values and trends by JAXA-New & UH16-JAXA

- $\alpha = 13^\circ$
 - Mild slopes of grid convergence
 - Good agreement among CFD results, but lower C_D than exp.

- $\alpha = 28^\circ$
 - More variations and steeper slopes of grid convergence
 - More scattering of $C_D(N\to\infty)$ among CFD results
 - Higher $C_D(N\to\infty)$ than exp.

N (grid points) $\approx \infty \quad 100M \quad 32M \quad 11M \quad 6M \quad 4M$
Comparison of flow separation at flap-body junction

- SX12-JAXA grid & JAXA-New grid have smaller, better-quality, more orthogonal hexes at the corner.
- Finer grids predicted the large corner flow separation
 - The flow separation by JAXA-New grid still remains smaller than that of SX12-JAXA grid by UPACS
 - Grid dependency will be investigated furthermore

C_f and grid distribution at $\alpha = 13^\circ$
Comparison of flow separation at flap-body junction

- SX12-JAXA grid & JAXA-New grid have smaller, better-quality, more orthogonal hexes at the corner.
- Finer grids predicted the large corner flow separation
 - The flow separation by JAXA-New grid still remains smaller than that of SX12-JAXA grid by UPACS
 - Grid dependency will be investigated furthermore

C_f and grid distribution at $\alpha = 13^\circ$
Comparison of tip vortices between JAXA grids

- JAXA-New grids have much finer faces on the tips and predict stronger vortices from the edges of the tips.
- However, C_p at 98% semi-span station was not improved.
 - More elements are probably needed in the volume.

Vorticity and grid distribution at $\alpha = 28^\circ$

UH16-JAXA grids, ≤ 72M nodes

JAXA-New grids, ≤ 24M nodes
Comparison of tip vortices between JAXA grids

- JAXA-New grids have much finer faces on the tips and predict stronger vortices from the edges of the tips.
- However, C_p at 98% semi-span station was not improved.
 - More elements are probably needed in the volume.

Vorticity and grid distribution at $\alpha = 28^\circ$

UH16-JAXA grids, ≤ 72M nodes

JAXA-New grids, ≤ 24M nodes
(2) Prediction of boundary layer transitions

- Our approach: e^N based method using RANS CFD C_p
 - Tollmien-Schlichting (TS) instability
 - Cross Flow (CF) instability
 - Laminar separation bubbles (LSB)

- We have not considered
 - Attachment line contamination due to the transport of turbulence from fuselage, etc.
 - Re-laminairisation due to strong acceleration of flow
 - Bypass transition due to the wake flow of fore wing element

- Predicted locations compared w/ those by Eliasson et al. (AIAA 2011-3009) available on HiLiftPW website
 - Prescribed $N = 5, 7, 10$ for comparison
Developed in JAXA NEXST (National EXperimental Supersonic Transport) Projects

Yoshida et al.

- CFD computation
 - Surface C_p
- Laminar boundary layer computation
 - Velocity profile
- Stability analysis (Eigenvalue analysis)
- e^N method (Envelope method)
- N value map
 - Threshold of N for transition
 - Prediction of Transition

- Stability analysis
 - Performed at several span locations
- Laminar boundary layer computation
 - Kaups & Cebeci method using C_p
 - Conical flow approximation
 - Laminar separation is detected based on the shape factor, H
- N-factor
 - Obtained by envelope method using integration of amplification rates of each small disturbance
- Prediction of transition
 - $N = 5, 7, 10$
 - If transition due to TS and CF does not occur before the laminar separation, transition starts just before the separation location

Results after only one cycle are presented
First CFD comp. is performed assuming fully turbulent flow
Predicted transition location: $\alpha = 13^\circ$, upper surf

- Computational conditions
 - SX12-JAXA grid
 - $N = 5, 7, 10$
 - Span = 17%, 41%, 65%, 85%, 95%

- Upper surface of slat
 - Most regions remain laminar
 - Transition location at outer span location changes by N

- Upper surfaces of main and flap
 - Most transitions are caused by laminar separation bubble

- Good agreement w/ Eliasson et al.
Predicted transition location: $\alpha = 13^\circ$, lower surf

- **Computational conditions**
 - SX12-JAXA grid
 - $N = 5, 7, 10$
 - Span = 17%, 41%, 65%, 85%, 95%

- **Lower surface of slat**
 - Most regions remain laminar until cusp

- **Lower surfaces of main and flap**
 - Most transitions are caused by natural transition
 - The results show slightly earlier onset of transitions than Eliasson et al., but similar trend of changes by N

- Good correlation w/ Eliasson et al.
Predicted transition location: $\alpha = 28^\circ$, upper surf

- **Computational conditions**
 - SX12-JAXA grid
 - $N = 5, 7, 10$
 - Span = 17%, 41%, 65%, 85%, 95%

- **Upper surface of slat**
 - *Most regions are turbulent*
 - Cf. Laminar at $\alpha = 13^\circ$

- **Upper surfaces of main and flap**
 - *Most transitions are caused by laminar separation bubble*
 - Similar to the result at $\alpha = 13^\circ$

- **Good agreement w/ Eliasson et al.**
Predicted transition location: $\alpha = 28^\circ$, lower surf

- Computational conditions
 - SX12-JAXA grid
 - $N = 5, 7, 10$
 - Span = 17%, 41%, 65%, 85%, 95%

- Lower surface of slat
 - Most regions remain laminar until cusp
 - Nearly identical with $\alpha = 13^\circ$

- Lower surfaces of main and flap
 - Most transitions are caused by natural transition
 - Main: delayed onset than $\alpha = 13^\circ$
 - Flap: slightly changed from $\alpha = 13^\circ$

- The results show earlier onset of transitions than Eliasson et al., but similar trend of changes by N

- Good correlation w/ Eliasson et al.
Concluding Remarks

- Computational studies have recently been performed to supplement HiLiftPW-1
- The influence of grid resolution around wing tip & SOB regions were investigated with two new unstructured hybrid grids
 - Finer, high-quality near-field meshes around the flap-body junction generated larger corner flow separation
 - The improvement of grid resolution on the surface around wing tip was not effective to improve the under-predicted C_p suction peaks
 - Further studies on more extensive grid refinement & influence of turbulence models may be required to capture flow physics in those regions
- A transition prediction method based on e^N method was evaluated by compared with data from Eliasson et al.
 - Predicted transition locations caused by laminar separation bubbles agreed well
 - Overall tendency of the transition patterns & locations agreed reasonably well with each other