

AIAA 2012-2844 Computational Studies of the NASA High-Lift Trap Wing Using Structured and Unstructured Grid Solvers

Mitsuhiro Murayama and Yasushi Ito

Aviation Program Group, JAXA

Kentaro Tanaka

Ryoyu Systems Co., Ltd.

Kazuomi Yamamoto

Aviation Program Group, JAXA

30th AIAA Applied Aerodynamics Conference, New Orleans, Louisiana, 25-28 June 2012.

Background

Outline

- Lessons learned from HiLiftPW-1
- Objectives
- Grid effects
 - Unstructured hybrid mesh generation w/ suppressed marching direction method at concave corners
- Prediction of boundary layer transitions
 - □ LSTAB based on *e^N* method
- Flow solvers & flow conditions
- Results
 - □ Grid convergence of CL & CD
 - Transition prediction
- Concluding remarks

- 1st AIAA CFD High Lift Prediction Workshop in 2010
 - □ NASA Trap wing: Full-span slat & flap, simplified wing tip
 - □ Summary by Rumsey *et al.* (AIAA 2011-0939)
- Identified areas needing additional attention for CFD
 - Outboard flap trailing edge region
 - Higher variability among CFD
 - Effect of initial conditions on CFD solutions
 - Bluff wing tip region
 - Vortices from the slat & wing tip grow & burst over the wing
 - Tendency to under-predict Cp suction levels near the wing tip
 - Accurate prediction of behavior of the vortices, their breakdown & their interaction over the wing may be important
 - □ Influence of transition

α **= 28°**

Comparison of flap SOB separation (α = 13°, Medium)

- CFD simulations w/ 2 solvers in JAXA
 - □ TAS code for unstructured grids
 - □ UPACS for structured grids
- Flap SOB flow separation by UPACS showing better agreement with exp.
- Due to difference in corner grid topology?
 - □ Str-JAXA grids are much finer

Comparison of SOB Separation in DPW-3

Murayama & Yamamoto, AIAA 2007-0258

Orthogonal mesh is more independent of approx methods in viscous term

New Hybrid surface and volume meshing method

- To create good-quality semi-structured surface quads around selected ridges with minimum user-interventions
 - Advancing-layers type method & special treatment at concave corners
- To improve the hybrid volume meshing method so that goodquality elements can be easily created at concave corners
 - Suppressed marching direction method

UPACS, Str-JAXA Grid

SA-noft2

SA-noft2-R(Crot=1) Influence of turbulent model

- SA-noft2-R(Crot=1)+QCR
- Dependency of the separation to turbulent models
 Yamamoto *et al.*, AIAA-2012-2895 (11:30 AM, Tuesday, June 26)

Influence of laminar-to-turbulent transition

- Trend of under-predicted C_L especially at $\alpha = 13^{\circ}$
 - Several reports importance of including the transition for better comparison w/ exp
- Transition prediction method developed in JAXA will be evaluated

Grid convergence from summary of HiliftPW-1 (AIAA 2011-0939)

- We have recently performed supplementary computational studies for the Trap Wing model
- (1) Grid effects
 - To compare results w/ JAXA structured grids & several unstructured hybrid grids by different mesh generators
 - Including new hybrid meshes w/ the suppressed marching direction method
 - To investigate differences in the wing tip region and the side-of body region
- (2) Prediction of boundary layer transitions
 - □ To evaluate a transition prediction method based on e^N method

- Comparison of JAXA structured grids and several unstructured hybrid grids by different mesh generators
- To investigate the wing tip region and the side-of body region
- Grids used in this study
 - □ JAXA multi-block structured grids using Gridgen, Str-OneTo-One-E (SX12-JAXA)
 - Coarse, Medium, Fine
 - JAXA unstructured hybrid grids, Unst-Mixed-Nodecentered-C using MEGG3D (UH16-JAXA)
 - Coarse, Medium, Fine
 - Committee-provided Uwyo unstructured hybrid grids, Unst-Mixed-FromTet-Nodecentered-A-v1 using VGRID
 - Coarse, Medium, Fine
 - Committee-provided DLR unstructured hybrid grids, Unst-Mixed-FromTet-Nodecentered-B using Solar
 - Coarse, Medium
 - New JAXA unstructured hybrid grids, Unst-Mixed-Nodecentered-JAXA New using MEGG3D
 - Coarse, Medium-coarse

Committee-provided unstructured hybrid grids

- University of Wyoming using VGRID
 - Unst-Mixed-FromTet-Nodecentered-A-v1: Unst-MFTNAv1
- DLR using Solar
 - Unst-Mixed-Nodecentered-B-v1: Unst-MNBv1
- Comparison of medium grids
 - □ Extruded elements at wing-body junction

New JAXA unstructured hybrid grids (MEGG3D)

- Surface grid
 - Advancing-layers type method w/ special treatment at concave corners
 - □ Direct advancing front method for surface triangulation
- Volume grid
 - □ Advancing-layers type method w/ suppressed marching direction method
 - □ Advancing front method for tetrahedral meshing
- Orthogonal hexes at wing-body junction

Numerical methods & flow conditions

	UPACS	TAS
Mesh type	Multi-block structured	Unstructured
Discretization	Cell-centered finite volume	Cell-vertex finite volume
Convection Flux	Roe 3rd-order (without Limiter)	HLLEW 2nd-order with Venkatakrishnan's limiter (K=1)
Time integration	Matrix-Free Gauss-Seidel	LU-Symmetric Gauss-Seidel
Turbulence model	SA-noft2-R (Crot=1)	SA-noft2-R (Crot=1)

- Modification to S-A model (SA-noft2-R (Crot=1)) to suppress excessive eddy viscosity after separation
 - □ w/o trip related terms
 - \square w/ modification to production term: $S = \min(\sqrt{2\Omega^2}, \sqrt{2S^2})$
- Restart from result at lower α to obtain results at higher α
- Slat & flap setting: Config 1
- No slat & flap brackets included
- M = 0.2, $Re = 4.3 \times 10^6$, $T = 520^{\circ}R \& \alpha = 13^{\circ}$, 28°

Grid convergence of C_L

- Good agreement among CFD results on finer grids
- Good correlation between UPACS for SX12-JAXA & TAS for UH16-JAXA on expected grid converged solutions, $C_{L(N \rightarrow \infty)}$
- Similar values & trends by JAXA-New & UH16-JAXA
- α = 13°
 - □ Mild slopes of grid convergence
 - Good agreement among CFD results, but lower C_L than exp.
- α = 28°
 - More variations and steeper slopes of grid convergence
 - $\Box \quad \text{Higher } C_{L(N \to \infty)} \text{ than exp.}$

Grid convergence of C_D

- Similar trends with CL
- Reasonable agreement among CFD results on finer grids at α = 13°
- Good correlation between UPACS for SX12-JAXA & TAS for UH16-JAXA on expected grid converged solutions, $C_{D(N\to\infty)}$
- Similar values and trends by JAXA-New & UH16-JAXA
- α = 13°
 - □ Mild slopes of grid convergence
 - Good agreement among CFD results, but lower C_D than exp.
- α = 28°
 - More variations and steeper slopes of grid convergence
 - □ More scattering of $C_{D(N \to \infty)}$ among CFD results
 - $\Box \quad \text{Higher } C_{D(N \to \infty)} \text{ than exp.}$

Comparison of flow separation at flap-body junction

- SX12-JAXA grid & JAXA-New grid have smaller, better-quality, more orthogonal hexes at the corner.
- Finer grids predicted the large corner flow separation
 - The flow separation by JAXA-New grid still remains smaller than that of SX12-JAXA grid by UPACS
 - □ Grid dependency will be investigated furthermore

Str-OneToOne-E (SX12 JAXA grid)

Unst-Mixed-Nodecentered-C (UH16 JAXA grid)

JAXA New grid

 C_f and grid distribution at α = 13°

Comparison of flow separation at flap-body junction

- SX12-JAXA grid & JAXA-New grid have smaller, better-quality, more orthogonal hexes at the corner.
- Finer grids predicted the large corner flow separation
 - The flow separation by JAXA-New grid still remains smaller than that of SX12-JAXA grid by UPACS
 - □ Grid dependency will be investigated furthermore

Str-OneToOne-E (SX12 JAXA grid)

Unst-Mixed-Nodecentered-C (UH16 JAXA grid)

JAXA New grid

 C_f and grid distribution at α = 13°

- JAXA-New grids have much finer faces on the tips and predict stronger vortices from the edges of the tips
- However, Cp at 98% semi-span station was not improved
 - □ More elements are probably needed in the volume

Comparison of tip vortices between JAXA grids

- JAXA-New grids have much finer faces on the tips and predict stronger vortices from the edges of the tips
- However, Cp at 98% semi-span station was not improved

More elements are probably needed in the volume

(2) Prediction of boundary layer transitions

• Our approach: *e^N* based method using RANS CFD *Cp*

- □ Tollmien-Schlichting (TS) instability
- □ Cross Flow (CF) instability
- □ Laminar separation bubbles (LSB)
- We have not considered
 - Attachment line contamination due to the transport of turbulence from fuselage, etc.
 - □ Re-laminarisation due to strong acceleration of flow
 - □ Bypass transition due to the wake flow of fore wing element
- Predicted locations compared w/ those by Eliasson *et al.* (AIAA 2011-3009) available on HiLiftPW website
 Prescribed N = 5, 7, 10 for comparison

LSTAB code for TS, CF, Laminar separation

Developed in JAXA NEXST (National Experimental Supersonic Transport) Projects

Yoshida *et al*.

- Stability analysis
 - Performed at several span locations
- Laminar boundary layer computation
 - □ Kaups & Cebeci method using *Cp*
 - Conical flow approximation
 - □ Laminar separation is detected based on the shape factor, *H*
- N-factor
 - Obtained by envelope method using integration of amplification rates of each small disturbance
- Prediction of transition
 - □ *N* = 5, 7, 10
 - If transition due to TS and CF does not occur before the laminar separation, transition starts just before the separation location

Results after only one cycle are presented# First CFD comp. is performed assumingfully turbulent flow

N = 5

N = 7N = 10

Tran by laminar separation bubbles

N = 7 by Eliasson N = 10 by Eliasson

- Computational conditions
 - □ SX12-JAXA grid
 - □ *N* = 5, 7, 10
 - □ Span = 17%, 41%, 65%, 85%, 95%
- Upper surface of slat
 - Most regions remain laminar
 - \Box Transition location at outer span location changes by N
- Upper surfaces of main and flap
 - Most transitions are caused by laminar separation bubble
- Good agreement w/ Eliasson *et al*.

Main wing cove

Slat TE

Slat cove

Predicted transition location: α = 13°, lower surf

- Computational conditions
 - □ SX12-JAXA grid
 - □ *N* = 5, 7, 10
 - □ Span = 17%, 41%, 65%, 85%, 95%
- Lower surface of slat
 - Most regions remain laminar until cusp
- Lower surfaces of main and flap
 - Most transitions are caused by natural transition.
 - The results show slightly earlier onset of transitions than Eliasson et al., but similar trend of changes by N
- Good correlation w/ Eliasson et al.

N=5

N = 7 N = 10

Tran by laminar separation bubbles

• N = 7 by Eliasson

• N = 10 by Eliasson

Predicted transition location: α = 28°, upper surf

- Computational conditions
 - □ SX12-JAXA grid
 - □ *N* = 5, 7, 10
 - □ Span = 17%, 41%, 65%, 85%, 95%
- Upper surface of slat
 - Most regions are turbulent
 - Cf. Laminar at α = 13°
- Upper surfaces of main and flap
 - Most transitions are caused by laminar separation bubble
 - \Box Similar to the result at α = 13°
- Good agreement w/ Eliasson *et al*.

Predicted transition location: α = 28°, lower surf

- Computational conditions
 - □ SX12-JAXA grid
 - □ *N* = 5, 7, 10
 - □ Span = 17%, 41%, 65%, 85%, 95%
- Lower surface of slat
 - □ Most regions remain laminar until cusp
 - Nearly identical with α = 13°
- Lower surfaces of main and flap
 - Most transitions are caused by natural transition
 - Main: delayed onset than α = 13°
 - Flap: slightly changed from α = 13°
 - The results show earlier onset of transitions than Eliasson et al., but similar trend of changes by N N = 7
- Good correlation w/ Eliasson et al.

- Computational studies have recently been performed to supplement HiLiftPW-1
- The influence of grid resolution around wing tip & SOB regions were investigated with two new unstructured hybrid grids
 - □ Finer, high-quality near-field meshes around the flap-body junction generated larger corner flow separation
 - □ The improvement of grid resolution on the surface around wing tip was not effective to improve the under-predicted C_p suction peaks
 - Further studies on more extensive grid refinement & influence of turbulence models may be required to capture flow physics in those regions
- A transition prediction method based on e^N method was evaluated by compared with data from Eliasson et al.
 - Predicted transition locations caused by laminar separation bubbles agreed well
 - Overall tendency of the transition patterns & locations agreed reasonably well with each other