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Background

 1st AIAA CFD High Lift Prediction Workshop in 2010
 NASA Trap wing: Full-span slat & flap, simplified wing tip
 Summary by Rumsey et al. (AIAA 2011-0939)

 Identified areas needing additional attention for CFD
 Outboard flap trailing edge region

 Higher variability among CFD
 Effect of initial conditions on CFD solutions
 Bluff wing tip region

 Vortices from the slat & wing tip grow & burst over the wing
 Tendency to under-predict Cp suction levels near the wing tip
 Accurate prediction of behavior of the vortices, their breakdown & their interaction over the 

wing may be important
 Influence of transition

SA-noft2 SA-noft2-R(Crot=1) SA-noft2-R(Crot=1)+QCR

Grid dependency

Coarse Medium Fine

Large loss of Pt

Turbulent model dependency

 = 28º

Cp at 98% span

Flap Cp in span-wise



Comparison of flap SOB separation (= 13º, Medium)

 CFD simulations w/ 2 solvers in JAXA
 TAS code for unstructured grids
 UPACS for structured grids

 Flap SOB flow separation by UPACS showing 
better agreement with exp.

 Due to difference in corner grid topology?
 Str-JAXA grids are much finer

UPACS, Str-JAXA GridTAS, Unst-JAXA Grid

Exp.
-uncorr = 12°
-corr ~ 15.5°



JAXA Ortho JAXA Extruded
Boeing 
Extruded

Comparison of SOB Separation in DPW-3

Full-NS

Thin-Layer NS

Murayama & Yamamoto, AIAA 2007-0258

DLR-F6 WB
JAXA UPACS
CL = 0.5
SA turb.
Medium meshes

 Orthogonal mesh is more independent of approx methods in viscous term
 Higher-quality elements
 Less artificial viscosity

 Similar approach in 
hybrid meshing?



New Hybrid surface and volume meshing method

New approach
2.24 M nodes

Reference
4.46 M nodes

Around TEWing tip

Cp
0.1

-0.8

 To create good-quality semi-structured surface quads around 
selected ridges with minimum user-interventions
 Advancing-layers type method & special treatment at concave 

corners
 To improve the hybrid volume meshing method so that good-

quality elements can be easily created at concave corners
 Suppressed marching direction method

Ito et al., AIAA 2011-3539



Comparison of flap SOB separation (= 13º, Medium)

 Dependency of the separation to turbulent models
 Yamamoto et al., AIAA-2012-2895 (11:30 AM, Tuesday, June 26)

Influence of turbulent model
SA-noft2 SA-noft2-R(Crot=1) SA-noft2-R(Crot=1)+QCR

UPACS, Str-JAXA Grid



Influence of laminar-to-turbulent transition

Grid convergence from summary of HiliftPW-1 (AIAA 2011-0939)

CL at = 13º CL at = 28º

Exp.
Exp.

 Trend of under-predicted CL especially at  = 13º
 Several reports importance of including the transition for better 

comparison w/ exp
 Transition prediction method developed in JAXA will be evaluated



Objectives

 We have recently performed supplementary 
computational studies for the Trap Wing model

 (1) Grid effects
 To compare results w/ JAXA structured grids & several 

unstructured hybrid grids by different mesh generators
 Including new hybrid meshes w/ the suppressed marching 

direction method

 To investigate differences in the wing tip region and the 
side-of body region

 (2) Prediction of boundary layer transitions
 To evaluate a transition prediction method based on eN

method



(1) Grid effects

 Comparison of JAXA structured grids and several unstructured hybrid grids by 
different mesh generators

 To investigate the wing tip region and the side-of body region

 Grids used in this study
 JAXA multi-block structured grids using Gridgen, Str-OneTo-One-E (SX12-JAXA)

 Coarse, Medium, Fine
 JAXA unstructured hybrid grids, Unst-Mixed-Nodecentered-C using MEGG3D (UH16-

JAXA)
 Coarse, Medium, Fine

 Committee-provided Uwyo unstructured hybrid grids, Unst-Mixed-FromTet-
Nodecentered-A-v1 using VGRID
 Coarse, Medium, Fine

 Committee-provided DLR unstructured hybrid grids, Unst-Mixed-FromTet-
Nodecentered-B using Solar
 Coarse, Medium

 New JAXA unstructured hybrid grids, Unst-Mixed-Nodecentered-JAXA New using 
MEGG3D
 Coarse, Medium-coarse



JAXA multi-block structured grids (SX12-JAXA, Gridgen)

Fine (124M)Medium (37M)Coarse (12M)

441 blocks

 O-O grid topology near the model surface
 To guarantee better orthogonality within the boundary layer

 C-O grid topology at outward
 O-H grid topology at wing-body junction

 High-density grid at the corner of wing-body junction



 Surface grid (Isotropic triangles)
 Direct advancing front method by Ito et al.

 Volume grid (Tetrahedra, Prisms, Pyramids)
 Delauney (tetra)  insertion of prismatic layer (prism)

 Extruded prisms on no-slip walls, including at wing-
body junction

1. Tetrahedral 
meshing

2. Inserting 
prismatic layer

JAXA unstructured hybrid grids (UH16-JAXA, MEGG3D)

Fine (72M)Medium (28M)Coarse (12M)

Nakahashi, Ito & Togashi, Int J Numer Meth Fl, 43(6-7), 2003, 
769-783. 
Ito & Nakahashi, Int J Numer Meth Fl, 45(1), 2004, 79-108.



Thinner layers 
at corner

Committee-provided unstructured hybrid grids
 University of Wyoming using VGRID

 Unst-Mixed-FromTet-Nodecentered-A-v1: Unst-MFTNAv1
 DLR using Solar

 Unst-Mixed-Nodecentered-B-v1: Unst-MNBv1
 Comparison of medium grids

 Extruded elements at wing-body junction

Unst-MFTNAv1 grid (11M) Unst-MNBv1 grid (37M)Unst-JAXA grid (UH16) (28M)

Less flap 
resolution Less nodes



New JAXA unstructured hybrid grids (MEGG3D)

 Surface grid
 Advancing-layers type method w/ special treatment at concave corners
 Direct advancing front method for surface triangulation

 Volume grid
 Advancing-layers type method w/ suppressed marching direction method
 Advancing front method for tetrahedral meshing

 Orthogonal hexes at wing-body junction

Medium-coarse (24M)Coarse (18M)



Numerical methods & flow conditions

 Modification to S-A model (SA-noft2-R (Crot=1)) to suppress excessive eddy 
viscosity after separation
 w/o trip related terms
 w/ modification to production term:

 Restart from result at lower  to obtain results at higher 

 Slat & flap setting: Config 1
 No slat & flap brackets included
 M = 0.2, Re = 4.3 x 106, T = 520ºR &  = 13º, 28º

UPACS TAS
Mesh type Multi-block structured Unstructured

Discretization Cell-centered finite volume Cell-vertex finite volume

Convection Flux Roe 3rd-order 
(without Limiter)

HLLEW 2nd-order with 
Venkatakrishnan’s limiter (K=1)

Time integration Matrix-Free Gauss-Seidel LU-Symmetric Gauss-Seidel 
Turbulence model SA-noft2-R (Crot=1) SA-noft2-R (Crot=1)

)2,2min( 22 SS 
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Grid convergence of CL

 Good agreement among CFD results on 
finer grids

 Good correlation between UPACS for 
SX12-JAXA & TAS for UH16-JAXA on 
expected grid converged solutions, 
CL(N)

 Similar values & trends by JAXA-New & 
UH16-JAXA

  = 13º
 Mild slopes of grid convergence
 Good agreement among CFD results, 

but lower CL than exp.

  = 28º
 More variations and steeper slopes of 

grid convergence
 Higher CL(N) than exp.

= 28º

= 13º

32M 11M 6M 4M 100MN (grid points) 
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Comparison of flow separation on flap (=13º, Medium)

TAS, UH16-JAXA grid UPACS, SX12-JAXA grid

Exp. (Tuft image)

Flap trailing-edge

Flap leading-edge

x/c~75%

x/c ~ 65% x/c ~ 65%

-uncorr = 12º, -corr ~ 15.5 º

CFD results show larger flap TE flow separation than exp.
 CFD: fully turb, Exp: free transition



Comparison of flow separation on flap (=13º, Medium)
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 CFD: fully turb, Exp: free transition
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Grid convergence of CD

 Similar trends with CL
 Reasonable agreement among CFD results 

on finer grids at = 13º
 Good correlation between UPACS for SX12-

JAXA & TAS for UH16-JAXA on expected 
grid converged solutions, CD(N)

 Similar values and trends by JAXA-New & 
UH16-JAXA

 = 13º
 Mild slopes of grid convergence 
 Good agreement among CFD results, but 

lower CD than exp.
 = 28º

 More variations and steeper slopes of grid 
convergence

 More scattering of CD(N) among CFD 
results

 Higher CD(N) than exp.

= 28º

= 13º
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Comparison of flow separation at flap-body junction

 SX12-JAXA grid & JAXA-New grid have smaller, better-quality, 
more orthogonal hexes at the corner.

 Finer grids predicted the large corner flow separation 
 The flow separation by JAXA-New grid still remains smaller than 

that of SX12-JAXA grid by UPACS
 Grid dependency will be investigated furthermore

Cf and grid distribution at  = 13

Str-OneToOne-E 
(SX12 JAXA grid)

Unst-Mixed-Nodecentered-C
(UH16 JAXA grid)

JAXA New grid



Comparison of flow separation at flap-body junction

 SX12-JAXA grid & JAXA-New grid have smaller, better-quality, 
more orthogonal hexes at the corner.

 Finer grids predicted the large corner flow separation 
 The flow separation by JAXA-New grid still remains smaller than 

that of SX12-JAXA grid by UPACS
 Grid dependency will be investigated furthermore

Cf and grid distribution at  = 13

Str-OneToOne-E 
(SX12 JAXA grid)

Unst-Mixed-Nodecentered-C
(UH16 JAXA grid)

JAXA New grid



Comparison of tip vortices between JAXA grids

Vorticity and grid distribution at  = 28
UH16-JAXA grids, ≤ 72M nodes JAXA-New grids, ≤ 24M nodes

 JAXA-New grids have much finer faces on the tips and predict 
stronger vortices from the edges of the tips

 However, Cp at 98% semi-span station was not improved
 More elements are probably needed in the volume



Comparison of tip vortices between JAXA grids

Vorticity and grid distribution at  = 28
UH16-JAXA grids, ≤ 72M nodes JAXA-New grids, ≤ 24M nodes

 JAXA-New grids have much finer faces on the tips and predict 
stronger vortices from the edges of the tips

 However, Cp at 98% semi-span station was not improved
 More elements are probably needed in the volume



(2) Prediction of boundary layer transitions

 Our approach: eN based method using RANS CFD Cp
 Tollmien-Schlichting (TS) instability
 Cross Flow (CF) instability
 Laminar separation bubbles (LSB)

 We have not considered
 Attachment line contamination due to the transport of turbulence 

from fuselage, etc.
 Re-laminarisation due to strong acceleration of flow
 Bypass transition due to the wake flow of fore wing element

 Predicted locations compared w/ those by Eliasson et al. 
(AIAA 2011-3009) available on HiLiftPW website
 Prescribed N = 5, 7, 10 for comparison



Developed in JAXA NEXST (National EXperimental Supersonic Transport) Projects
Yoshida et al.

CFD computation

Laminar boundary layer computation

Stability analysis (Eigenvalue analysis)

eN method (Envelope method)

N value map

Surface Cp

Velocity profile

Prediction of Transition

Threshold of N for 
transition

LSTAB code for TS, CF, Laminar separation

 Stability analysis
 Performed at several span locations

 Laminar boundary layer computation
 Kaups & Cebeci method using Cp

 Conical flow approximation
 Laminar separation is detected based on 

the shape factor, H
 N-factor

 Obtained by envelope method using 
integration of amplification rates of each 
small disturbance

 Prediction of transition
 N = 5, 7, 10
 If transition due to TS and CF does not 

occur before the laminar separation, 
transition starts just before the separation 
location

# Results after only one cycle are presented 
# First CFD comp. is performed assuming 
fully turbulent flow



Predicted transition location:  = 13, upper surf

 Computational conditions
 SX12-JAXA grid

 N = 5, 7, 10

 Span = 17%, 41%, 65%, 85%, 95%

 Upper surface of slat
 Most regions remain laminar
 Transition location at outer span location changes by N

 Upper surfaces of main and flap
 Most transitions are caused by laminar separation bubble

 Good agreement w/ Eliasson et al.

N = 5
N = 7
N = 10
Tran by laminar 
separation bubbles
N = 7 by Eliasson
N = 10 by Eliasson



Predicted transition location:  = 13, lower surf

 Computational conditions
 SX12-JAXA grid
 N = 5, 7, 10
 Span = 17%, 41%, 65%, 85%, 95%

 Lower surface of slat
 Most regions remain laminar until cusp

 Lower surfaces of main and flap
 Most transitions are caused by natural transition
 The results show slightly earlier onset of transitions than 

Eliasson et al., but similar trend of changes by N

 Good correlation w/ Eliasson et al. N = 5
N = 7
N = 10
Tran by laminar 
separation bubbles
N = 7 by Eliasson
N = 10 by Eliasson



Predicted transition location:  = 28, upper surf

 Computational conditions
 SX12-JAXA grid
 N = 5, 7, 10
 Span = 17%, 41%, 65%, 85%, 95%

 Upper surface of slat
 Most regions are turbulent

 Cf. Laminar at  = 13

 Upper surfaces of main and flap
 Most transitions are caused by laminar separation bubble
 Similar to the result at  = 13

 Good agreement w/ Eliasson et al.

N = 5
N = 7
N = 10
Tran by laminar 
separation bubbles
N = 7 by Eliasson
N = 10 by Eliasson



Predicted transition location:  = 28, lower surf

 Computational conditions
 SX12-JAXA grid 
 N = 5, 7, 10
 Span = 17%, 41%, 65%, 85%, 95%

 Lower surface of slat
 Most regions remain laminar until cusp

 Nearly identical with  = 13
 Lower surfaces of main and flap

 Most transitions are caused by natural transition
 Main: delayed onset than  = 13
 Flap: slightly changed from  = 13

 The results show earlier onset of transitions than Eliasson et al., but 
similar trend of changes by N

 Good correlation w/ Eliasson et al.

N = 5
N = 7
N = 10
Tran by laminar 
separation bubbles
N = 7 by Eliasson
N = 10 by Eliasson



Concluding Remarks

 Computational studies have recently been performed to supplement 
HiLiftPW-1

 The influence of grid resolution around wing tip & SOB regions were 
investigated with two new unstructured hybrid grids
 Finer, high-quality near-field meshes around the flap-body junction 

generated larger corner flow separation
 The improvement of grid resolution on the surface around wing tip 

was not effective to improve the under-predicted Cp suction peaks
 Further studies on more extensive grid refinement & influence of 

turbulence models may be required to capture flow physics in those 
regions

 A transition prediction method based on eN method was evaluated by 
compared with data from Eliasson et al.
 Predicted transition locations caused by laminar separation bubbles 

agreed well
 Overall tendency of the transition patterns & locations agreed 

reasonably well with each other


