Quantification of Grid Refinement Effects for NASA High Lift Trap Wing Using Error Transport Model

P.A. Cavallo, G.M. Feldman

Combustion Research and Flow Technology, Inc. (CRAFT Tech)

30th AIAA Applied Aerodynamics Conference New Orleans, LA June 25, 2012

Presentation Overview

- Analysis Objectives
 - Assess refinement effects as we approach stall
 - How well do our error prediction methods work?
 - How can we address/identify dissimilar refinement pairs?
- Error Quantification Method ETE Solver
- Discussion of FUN3D results
 - 28 through 36 degrees angle of attack
 - Coarse/Medium/Fine grids
- Error Predictions Using ETE
 - FUN3D Grid Sequence
 - Cell-centered ETE on *USM3D* Solution
- New Approach for Assessment of Refinement Pairs
- Conclusions and Lessons Learned

Errors in CFD Analysis

- Solution errors inherent to any CFD analysis
 - Discretization errors (grid size/spacings, time step)
 - Modeling errors (turbulence, transition, *etc*.)
 - Usage, iterative convergence, coding errors, *etc*.
- Discretization errors generally most dominant, but must be understood before tackling turbulence modeling issues
- How do we check our results? Verification & Validation (V&V)
 - Compare with test data (validation)
 - Perform grid refinement study (verification) required workshop element!
 - Richardson extrapolation given 3 mesh sequence
- Our prior work at HLPW-1 examined refinement sequences at 13°, 28°
 - Error transport model seemed capable of predicting increments between coarse/fine and medium/fine solutions for these conditions
 - Current follow-on explores increments near stall, maximum C_L

Study Objectives

- Explore mesh dependent effects as we approach stall
 - UT5 tetrahedral grid sequence employed
 - FUN3D solver, Spalart-Allmaras turbulence model
- Apply Error Transport Model to solution sequences
 - Evaluate method's ability to predict increments between solutions
 - If grid-induced errors can be predicted reliably, it potentially precludes need to run fine grid solution
 - In addition, reliable prediction could confirm confidence in results
- Investigate how to quantify dissimilar solution pairs
 - Such pairs cannot be considered in refinement sequence
 - ETE method cannot account for such disparities
 - Potential approach developed with preliminary results shown
- Identify shortcomings that remain to be addressed

Error Prediction / Quantification

• 3D Error Transport Equation (ETE) Solver for steady state flows

$$\frac{\partial}{\partial t} \iiint \left(\vec{Q} - \vec{Q}^h \right) dV + \iint \left(\left(\vec{F} \left(\vec{Q} \right) - \vec{F} \left(\vec{Q}^h \right) \right) \cdot \hat{n} \right) dA = \iint \left(\left(\vec{G} \left(\vec{Q} \right) - \vec{G} \left(\vec{Q}^h \right) \right) \cdot \hat{n} \right) dA - \vec{R}$$

 $\frac{\partial}{\partial t} \iiint \vec{\varepsilon} \, dV + \iiint \left(\left(A \left(\vec{Q}^h \right) \vec{\varepsilon} \right) \cdot \hat{n} \right) dA = \iint \left(\vec{G} \left(\vec{\varepsilon} \right) \cdot \hat{n} \right) dA - \vec{R}_{INV} - \vec{R}_{TURB}$

- Inviscid residual: upwind terms of Roe flux
- Turbulent residual: accounts for effects of error in μ_t on mean flow
- k– ϵ , k– ω , Spalart-Allmaras models supported
- Recently expanded to support cell-centered solvers and solve ETE using cell-centered or node-centered discretization^{*}
- Error Function Library
 - Propagates predicted errors into derived variables of interest
 - PLOT3D functions, integrated functions, etc.

^{*} Cavallo, P.A., O'Gara, M.R., Feldman, G.M., and Liu, Z., "Unified Error Transport Equation Solver for Solution Verification on Unstructured Grids," AIAA Paper 2012-3345, 42nd Fluid Dynamics Conference, New Orleans, LA, June 25-28, 2012.

What Are We Looking For?

- Goal of Error Transport research is to establish alternative solution verification method
 - Provide reliable predictions of mesh-induced errors
 - Prediction of coarse-to-fine grid increments
 - Useful for quantifying local and integrated quantities
- Error bars predicted by ETE solution and Error Functions should:
 - 1) Contain fine grid results
 - 2) Contain results of Richardson extrapolation
 - 3) Decrease in magnitude with grid refinement
 - 4) Not be overly conservative as to be unusable
- If fine grid results fall outside predicted error bars, it potentially indicates new flow features result from grid refinement
- If test data falls outside predicted solution and error bars, it potentially indicates a deficiency in physical modeling

Lift Characteristics Near Stall

- Maximum C_L predicted to occur at 32 degrees for each grid
- Stall point is mesh dependent
 - Medium grid stalls first just beyond 34 degrees
 - Coarse and fine grids both stall at ~35 degrees
 - Separation patterns on coarse, fine grids are quite different

FUN3D Results, $\alpha = 28^{\circ}$

30th Applied Aerodynamics Conference

FUN3D Results, α =32°

30th Applied Aerodynamics Conference

FUN3D Results, α =34°

30th Applied Aerodynamics Conference

FUN3D Results, α =35°

30th Applied Aerodynamics Conference

FUN3D Results, α =36°

30th Applied Aerodynamics Conference

Stall Patterns

ETE Results, $\alpha = 28^{\circ}$

30th Applied Aerodynamics Conference

ETE Results, $\alpha = 32^{\circ}$

30th Applied Aerodynamics Conference

ETE Results, $\alpha = 34^{\circ}$

ETE Results, $\alpha = 35^{\circ}$

30th Applied Aerodynamics Conference

ETE Results, $\alpha = 36^{\circ}$

30th Applied Aerodynamics Conference

USM3D ETE Results, α =28°

30th Applied Aerodynamics Conference

- Error Transport model cannot account for absence or presence of a flow structure due to grid refinement
 - e.g., stall vs. no stall
- Means of quantifying similarly between solution pairs needed to assess if sequence is near monotonic range – otherwise Richardson extrapolation and ETE are not applicable
 - e.g., USM3D solution sequences beyond
 30 degrees (Pandya et al., 2011)
- Approach explored based on intersection of metric ellipsoids
 - Metric formed using Hessian matrix of 2nd derivatives
 - Eigenanalysis extracts principal directions and length scales associated with flowfield

- Metric tensors represented as 3D ellipsoid
- Intersection of ellipsoids can indicate scaling and alignment
 - Consider M1 to be coarse solution metric, M2 fine solution metric
 - Solution should sharpen with mesh refinement: principal directions are nearly aligned and length scales are merely scaled from coarse to fine grid
 - Misalignment between solution pairs would result in intersected volume that is less than volume of metric ellipsoid M2

• Examine the volume fraction $\phi = V_{INT} / V_2$

Similar Solution Pair, α =28°

- Preliminary results comparing Coarse (top) and Medium (bottom) grid solutions from USM3D
- Solution pair is similar and volume fraction is consistent with this
- "Spottiness" of plot believed related to data transfer/interpolation

Dissimilar Solution Pair, α =32°

- At 32 degrees, the Coarse USM3D solution predicts stall, while the Medium grid predicts attached flow
- Volume fraction from metric intersection comparing the solutions picks up this disparity well
- Still exploring how we can improve method and use this information

Conclusions and Lessons Learned

- Investigated grid refinement effects up to and beyond maximum C_L
 - Angle of peak C_L itself is grid-independent (~32 degrees)
 - Onset of stall, separated flow structures exhibit mesh dependent behavior
 - Inboard vs. outboard evolution of separation
- High alpha cases were a considerable challenge for Error Transport Model's ability to capture grid-induced increments
 - Generally, predicted errors in C_p were quite large for all medium grid FUN3D solutions
 - Clearly, accuracy concerns must be revisited for these cases
 - Cell-centered ETE solution for USM3D shows promise
- Path towards quantifying solution similarity established
 - Method based on computing metric tensor intersections
 - Preliminary application on USM3D sequence
 - Method needs further development and testing

Acknowledgment

- Research conducted under Phase II SBIR program sponsored by NASA Langley Research Center, Hampton, VA
- Questions?
- Contact info:

Dr. Peter Cavallo, Senior Research Scientist CRAFT Tech 6210 Keller's Church Road Pipersville, PA 18947 (215)-766-1520 cavallo@craft-tech.com

