Unstructured adaptive mesh calculations for NASA TRAP WING using the code HiFUN

Ravindra K., Nikhil Vijay Shende, Sumit Kumar Patel & N. Balakrishnan
CAd Lab, Department of Aerospace Engg., IISc, Bangalore 560012

30th AIAA Applied Aerodynamics Conference, New Orleans, LA
June 25-28, 2012
Outline

1. Scope
2. Solver and Methodology
3. Results
4. Conclusions
1 Scope
2 Solver and Methodology
3 Results
4 Conclusions
Scope

- Results summary
 - Grid convergence study
 - Flap setting study
- Adaptive mesh refinement
- Effect of brackets
- Unsteady effects near stall
Outline

1. Scope
2. Solver and Methodology
3. Results
4. Conclusions
Algorithmic features

- Unstructured cell centre finite volume methodology
- Higher order accuracy: linear reconstruction procedure
- Higher order time accuracy by dual time method
- Flux limiting: Venkatakrishnan Limiter
- Inviscid flux computation: Roe scheme
- Convergence acceleration: matrix free SGS relaxation procedure
- The viscous flux discretization: Green–Gauss procedure
- Eddy viscosity computation: Spalart Allmaras TM
- Parallelization: MPI
Grid strategy

- Unstructured hybrid grids
 - Prismatic elements in the viscous padding
 - Tetrahedral elements outside the viscous padding
- Far field is placed 150 chords away from wing
- Most of the grids are generated adhering to the guidelines provided by the technical committee of CFD HiLiftPW-1
Configurations

- Configuration 1 - Slat 30, Flap 25 full span
- Configuration 1 with brackets
- Configuration 8 - Slat 30, Flap 20 full span
Grids

<table>
<thead>
<tr>
<th>Config</th>
<th>Grid code</th>
<th>NC (million)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UG1</td>
<td>11.85</td>
<td>SPICES09</td>
</tr>
<tr>
<td></td>
<td>UG2</td>
<td>38.60</td>
<td>SPICES09</td>
</tr>
<tr>
<td></td>
<td>CG</td>
<td>7.7</td>
<td>HiLiftPW1</td>
</tr>
<tr>
<td></td>
<td>MG</td>
<td>21.9</td>
<td>HiLiftPW1</td>
</tr>
<tr>
<td></td>
<td>FG</td>
<td>63.3</td>
<td>HiLiftPW1</td>
</tr>
<tr>
<td></td>
<td>AG1</td>
<td>23.95</td>
<td>AdaptedCG</td>
</tr>
<tr>
<td></td>
<td>AG2</td>
<td>50.15</td>
<td>AdaptedAG1</td>
</tr>
<tr>
<td>1–WB</td>
<td>CGB</td>
<td>11.26</td>
<td>Recent</td>
</tr>
<tr>
<td></td>
<td>MGB</td>
<td>28.86</td>
<td>Recent</td>
</tr>
<tr>
<td>8</td>
<td>MG8</td>
<td>21.41</td>
<td>HiLiftPW1</td>
</tr>
</tbody>
</table>

Ravindra et al. — Unstructured adaptive mesh calculations for NASA TRAP WING using the code HiFUN
1. Scope

2. Solver and Methodology

3. Results

4. Conclusions
3 Results

- Results summary
- Adaptive calculations
- Bracket effect
- Unsteady computations
Solution convergence criterion

Fine grid (FG) at $\alpha = 28^\circ$

- Residue fall in energy 10 decades
- Lift/Drag coefficients convergence: less than 0.1 count in 100 iterations
Grid convergence study at $\alpha = 13^\circ$

Grids: CG, MG and FG

- C_L convergence
- C_D convergence
- C_M convergence

- C_L and C_M converge monotonically to experimental values
- C_D convergence is non-monotonous

Between Coarse to Fine grids

- Changes in lift, drag and moment counts are 67, 20 and 19 respectively
Grid convergence study at $\alpha = 28^\circ$

Grids: CG, MG and FG

C_L convergence, C_D convergence, C_M convergence

- C_L and C_M converge monotonically to experimental values
- C_D converges non-monotonically to experimental value

Between Coarse to Fine grids

- Changes in lift, drag and moment counts are 71, 19 and 26 respectively
Grid convergence study: Velocity profiles
CG, MG and FG: $\alpha = 28^\circ$

Main, $\eta = 15\%$
Main, $\eta = 83\%$
Flap, $\eta = 83\%$(front)

Flap, $\eta = 83\%$(aft)
Probe locations
Effect of grid resolution on drag

<table>
<thead>
<tr>
<th>α°</th>
<th>Grid code</th>
<th>C_{DP}</th>
<th>C_{DV}</th>
<th>C_D</th>
<th>ΔC_{DP}</th>
<th>ΔC_{DV}</th>
<th>ΔC_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>CG</td>
<td>0.31280</td>
<td>0.01056</td>
<td>0.32336</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>MG</td>
<td>0.31533</td>
<td>0.01107</td>
<td>0.32640</td>
<td>0.00253</td>
<td>0.00052</td>
<td>0.00304</td>
</tr>
<tr>
<td></td>
<td>FG</td>
<td>0.31378</td>
<td>0.01161</td>
<td>0.32540</td>
<td>-0.00155</td>
<td>0.00054</td>
<td>-0.00101</td>
</tr>
<tr>
<td>28</td>
<td>CG</td>
<td>0.66631</td>
<td>0.01013</td>
<td>0.67643</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>MG</td>
<td>0.67053</td>
<td>0.01084</td>
<td>0.68138</td>
<td>0.00423</td>
<td>0.00072</td>
<td>0.00494</td>
</tr>
<tr>
<td></td>
<td>FG</td>
<td>0.66666</td>
<td>0.01174</td>
<td>0.67840</td>
<td>-0.00387</td>
<td>0.00090</td>
<td>-0.00297</td>
</tr>
</tbody>
</table>

Pressure drag shows greater dependency on grid refinement than viscous drag
Scope \ Solver and Methodology \ Results \ Conclusions

\[C_p \text{ distribution - Flap, } \alpha = 13^\circ \]

- With grid refinement, pressure distribution moves towards experimental results
- Even fine grid resolution near wing tip is inadequate to capture accurate pressure gradients due to vortical flow
Compared with experiments, the computed lift and drag coefficients show excellent
similarity. However, the pitching moment coefficient curve presents a noticeable
deviation from the experimental results. This could be due to:
- Lack of grid resolution in the tip region?
- Effect of brackets?
Excellent comparisons can be seen for α_{max} and CL_{max} with experimental values.

<table>
<thead>
<tr>
<th></th>
<th>α_{max}</th>
<th>CL_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG1</td>
<td>32</td>
<td>2.9735</td>
</tr>
<tr>
<td>UG2</td>
<td>33</td>
<td>3.0565</td>
</tr>
<tr>
<td>Experiment</td>
<td>32.993</td>
<td>3.0306</td>
</tr>
</tbody>
</table>
Flap setting study

Lift

Drag

Moment
\[\Delta C_L, \Delta C_D \text{ and } \Delta C_M \text{ count} \]

\[\Delta(\cdot) = (\cdot)_{\text{config}1} - (\cdot)_{\text{config}8} \]
3 Results

- Results summary
- Adaptive calculations
- Bracket effect
- Unsteady computations
Adaptive calculations

Solution based adaptation

- Hybrid
- R–parameter + divergence / curl
- Adaptation effected outside viscous padding
 - Pressure drag sensitive to flow curvatures
 - Viscous drag depends on boundary layer padding
 - Use fine viscous padding and effect adaptation outside padding

Reference: R–parameter

Adapted grids

Adapted grid AG2

Zoom view of grid AG2
Grid cut views

Level 0
Level 1
Level 2
Grid sections at 98% wingspan for various adaption levels
Adapted grids - C_P distribution (Slat)

- No significant effect of adaptation in slat region

17% span

50% span

98% span
Adapted grids - C_P distribution (Main)

17% span

- Pressure distribution becomes progressively better with adaptation

- Still grid resolution in not sufficient near tip region
Adapted grids - C_p distribution (Flap)

- Pressure distribution becomes progressively better with adaptation
- Still grid resolution is not sufficient near tip region

17% span

50% span

98% span
3 Results

- Results summary
- Adaptive calculations
- Bracket effect
- Unsteady computations
Bracket effect

Surface grid with brackets
Bracket effect

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Grid code</th>
<th>C_L</th>
<th>C_D</th>
<th>C_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 without brackets</td>
<td>CG</td>
<td>1.9429</td>
<td>0.3237</td>
<td>-0.4623</td>
</tr>
<tr>
<td>1 with brackets</td>
<td>CGB</td>
<td>1.9714</td>
<td>0.3261</td>
<td>-0.4668</td>
</tr>
<tr>
<td>1 without brackets</td>
<td>MG</td>
<td>1.9967</td>
<td>0.3264</td>
<td>-0.4789</td>
</tr>
<tr>
<td>1 with brackets</td>
<td>MGB</td>
<td>2.0008</td>
<td>0.3283</td>
<td>-0.4774</td>
</tr>
<tr>
<td>1 with brackets</td>
<td>Experiments</td>
<td>2.0468</td>
<td>0.3330</td>
<td>-0.5032</td>
</tr>
</tbody>
</table>

$\alpha = 13^\circ$

- C_L and C_D computed with the bracket show better match with the experiments
- Computations without the bracket show better performance in terms of C_M prediction
Bracket effect

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Grid code</th>
<th>C_L</th>
<th>C_D</th>
<th>C_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 without brackets</td>
<td>CG</td>
<td>2.8197</td>
<td>0.6764</td>
<td>-0.4185</td>
</tr>
<tr>
<td>1 with brackets</td>
<td>CGB</td>
<td>2.2987</td>
<td>0.6295</td>
<td>-0.3427</td>
</tr>
<tr>
<td>1 without brackets</td>
<td>MG</td>
<td>2.8826</td>
<td>0.6814</td>
<td>-0.4421</td>
</tr>
<tr>
<td>1 with brackets</td>
<td>MGB</td>
<td>2.7638</td>
<td>0.6476</td>
<td>-0.4095</td>
</tr>
<tr>
<td>1 with brackets</td>
<td>Experiments</td>
<td>2.8952</td>
<td>0.6776</td>
<td>-0.4559</td>
</tr>
</tbody>
</table>

$\alpha = 28^\circ$

- C_L, C_D and C_M computed without the bracket show better match with the experiments.
Bracket effect: C_P distribution
Spanwise flap pressure distribution, $\alpha = 28^\circ$
Bracket effect: Velocity profiles

CGB and MGB: $\alpha = 28^\circ$

Main, $\eta = 15\%$

Main, $\eta = 83\%$

Flap, $\eta = 83\%$(front)

Flap, $\eta = 83\%$(aft)

Probe locations
3 Results

- Results summary
- Adaptive calculations
- Bracket effect
- Unsteady computations
Unsteady computations, $\alpha = 30.44^\circ$

- Evolution of C_L
- Evolution of C_D

<table>
<thead>
<tr>
<th>α°</th>
<th>Physical time step</th>
<th>Strouhal number</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.440</td>
<td>0.0025</td>
<td>0.2362</td>
</tr>
</tbody>
</table>

- Lift and drag coefficients vary by about 5 and 50 counts respectively

Ravindra et al. — Unstructured adaptive mesh calculations for NASA TRAP WING using the code HiFUN

36/42
Unsteady computations, $\alpha = 32.942^\circ$

<table>
<thead>
<tr>
<th>α°</th>
<th>Physical time step</th>
<th>Strouhal number</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.942</td>
<td>0.0025</td>
<td>0.1554</td>
</tr>
</tbody>
</table>

- Lift and drag coefficients vary by about 5 and 50 counts respectively
Outline

1. Scope
2. Solver and Methodology
3. Results
4. Conclusions
Concluding remarks

Conclusions

- High lift computations for configurations 1 and 8 of NASA Trap Wing on various hybrid unstructured grids using flow solver HiFUN are presented.

- The ability of code HiFUN to accurately predict integrated force coefficients has been demonstrated.

- Though the solution adaptive grids show promise in terms of capturing more accurate pressure distribution compared to the base grid, further analysis is needed to understand their ability to predict accurate integrated force and moment coefficients.
Concluding remarks

Conclusions continued

- Inclusion of brackets does not seem to enhance the accuracy of prediction of integrated coefficients.
- Unsteady computations reveal that the flow is grossly steady even at higher incidences near maximum lift coefficient.
Gopalakrishna N. (CAd Lab): Bracket study
Partha Mondal (CAd Lab): Unsteady study, presentation
Parthiban A. (SandI): Grids for Configuration 1 with brackets
Thank you