

Unstructured adaptive mesh calculations for NASA TRAP WING using the code HiFUN

Ravindra K., Nikhil Vijay Shende, Sumit Kumar Patel & N. Balakrishnan CAd Lab, Department of Aerospace Engg., IISc, Bangalore 560012

30th AIAA Applied Aerodynamics Conference, New Orleans, LA June 25-28, 2012

Outline

2 Solver and Methodology

3 Results

4 Conclusions

Outline

2 Solver and Methodology

4 Conclusions

Scope

- Results summary
 - Grid convergence study
 - Flap setting study
- Adaptive mesh refinement
- Effect of brackets
- Unsteady effects near stall

(日) (四) (日) (日) (日) (日)

Outline

2 Solver and Methodology

3 Results

4 Conclusions

Features of code HIFUN

HIFUN: HIgh Resolution Flow Solver on UNstructured Meshes

Algorithmic features

- Unstructured cell centre finite volume methodology
- Higher order accuracy: linear reconstruction procedure
- Higher order time accuracy by dual time method
- Flux limiting: Venkatakrishnan Limiter
- Inviscid flux computation: Roe scheme
- Convergence acceleration: matrix free SGS relaxation procedure
- The viscous flux discretization: Green–Gauss procedure
- Eddy viscosity computation: Spalart Allmaras TM
- Parallelization: MPI

Grid strategy

Grid strategy

- Unstructured hybrid grids
 - Prismatic elements in the viscous padding
 - Tetrahedral elements outside the viscous padding
- Far field is placed 150 chords away from wing
- Most of the grids are generated adhering to the guidelines provided by the technical committee of CFD HiLiftPW-1

(日) (四) (日) (日) (日) (日)

Configurations

Configurations

- Configuration 1 Slat 30, Flap 25 full span
- Configuration 1 with brackets
- Configuration 8 Slat 30, Flap 20 full span

Grids

Config	Grid code	NC (million)	Comment
1	UG1	11.85	SPICES09
	UG2	38.60	SPICES09
	CG	7.7	HiLiftPW1
	MG	21.9	HiLiftPW1
	FG	63.3	HiLiftPW1
	AG1	23.95	AdaptedCG
	AG2	50.15	AdaptedAG1
1–WB	CGB	11.26	Recent
	MGB	28.86	Recent
8	MG8	21.41	HiLiftPW1

Ravindra et al. - Unstructured adaptive mesh calculations for NASA TRAP WING using the code HiFUN

A DE A E A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Outline

2 Solver and Methodology

4 Conclusions

Outline

Results summary

Adaptive calculations

Bracket effect

Unsteady computations

Solution convergence criterion Fine grid (FG) at $\alpha = 28^{\circ}$

- Residue fall in energy 10 decades
- Lift/Drag coefficients convergence: less than 0.1 count in 100 iterations

Grid convergence study at $\alpha=13^o$ $_{\rm Grids:~CG,~MG~and~FG}$

C_L and *C_M* converge monotonically to experimental values
C_D convergence is non-monotonous

Between Coarse to Fine grids

 Changes in lift, drag and moment counts are 67, 20 and 19 respectively

Grid convergence study at $\alpha=28^o$ $_{\rm Grids:\ CG,\ MG \ and\ FG}$

C_L and C_M converge monotonically to experimental values
C_D converges non-monotonically to experimental value

Between Coarse to Fine grids

 Changes in lift, drag and moment counts are 71, 19 and 26 respectively

Grid convergence study: Velocity profiles CG, MG and FG: $\alpha = 28^{\circ}$

Effect of grid resolution on drag

α^{o}	Grid	C_{DP}	C_{DV}	C_D	ΔC_{DP}	ΔC_{DV}	ΔC_D
	coue						
13	CG	0.31280	0.01056	0.32336			
	MG	0.31533	0.01107	0.32640	0.00253	0.00052	0.00304
	FG	0.31378	0.01161	0.32540	-0.00155	0.00054	-0.00101
28	CG	0.66631	0.01013	0.67643			
	MG	0.67053	0.01084	0.68138	0.00423	0.00072	0.00494
	FG	0.66666	0.01174	0.67840	-0.00387	0.00090	-0.00297

 Pressure drag shows greater dependency on grid refinement than viscous drag

C_p distribution - Flap, $lpha=13^o$

- With grid refinement, pressure distribution moves towards experimental results
- Even fine grid resolution near wing tip is inadequate to capture accurate pressure gradients due to vortical flow

α sweep study

- Computed lift and drag coefficients show excellent comparison with experiments
- Computed pitching moment coefficient curve shows deviation from experimental results
 - Lack of grid resolution in tip region?
 - Effect of brackets?

(日) (四) (日) (日) (日) (日)

Maximum lift coefficient

	α_{\max}	CL_{max}
UG1	32	2.9735
UG2	33	3.0565
Experiment	32.993	3.0306

Excellent comparisons can be seen for α_{max} and CL_{max} with experimental values

Flap setting study

ΔC_L , ΔC_D and ΔC_M count

 $\Delta(.) = (.)_{\textit{config1}} - (.)_{\textit{config8}}$

Outline

- Results summary
- Adaptive calculations
- Bracket effect
- Unsteady computations

Adaptive calculations

Solution based adaptation

- Hybrid
- R-parameter + divergence / curl
- Adaptation effected outside viscous padding
 - Pressure drag sensitive to flow curvatures
 - Viscous drag depends on boundary layer padding
 - Use fine viscous padding and effect adaptation outside padding

Reference: R-parameter

Ganesh N., N. V. Shende, N. Balakrishnan, "'R-parameter: A local truncation error based adaptive framework for

finite volume compressible flow solvers", Computers & Fluids, Volume 38, Number 9, October 2009, pp.

1799–1822.

Adapted grids

Grid cut views

Level 0 Level 1 Level 2 Grid sections at 98% wingspan for various adaption levels

Adapted grids - C_P distribution (Slat)

No significant effect of adaptation in slat region

Adapted grids - C_P distribution (Main)

- Pressure distribution becomes progressively better with adaptation
- Still grid resolution in not sufficient near tip region

Adapted grids - C_P distribution (Flap)

- Pressure distribution becomes progressively better with adaptation
- Still grid resolution in not sufficient near tip region

Outline

- Results summary
- Adaptive calculations
- Bracket effect
- Unsteady computations

Bracket effect

Surface grid with brackets

Bracket effect

Configuration	Grid code	C_L	C_D	C_M
1 without brackets	CG	1.9429	0.3237	-0.4623
1 with brackets	CGB	1.9714	0.3261	-0.4668
1 without brackets	MG	1.9967	0.3264	-0.4789
1 with brackets	MGB	2.0008	0.3283	-0.4774
1 with brackets	Experiments	2.0468	0.3330	-0.5032
	$\alpha = 13^{o}$			

- C_L and C_D computed with the bracket show better match with the experiments
- Computations without the bracket show better performance in terms of C_M prediction

Bracket effect

Configuration	Grid code	C_L	C_D	C_M	
1 without brackets	CG	2.8197	0.6764	-0.4185	
1 with brackets	CGB	2.2987	0.6295	-0.3427	
1 without brackets	MG	2.8826	0.6814	-0.4421	
1 with brackets	MGB	2.7638	0.6476	-0.4095	
1 with brackets	Experiments	2.8952	0.6776	-0.4559	
$\alpha = 28^{\circ}$					

C_L, C_D and C_M computed without the bracket show better match with the experiments

Bracket effect: C_P distribution

Spanwise flap pressure distribution, $\alpha = 28^{\circ}$

Bracket effect: Velocity profiles CGB and MGB: $\alpha = 28^{\circ}$

Outline

- Results summary
- Adaptive calculations
- Bracket effect
- Unsteady computations

Unsteady computations, $\alpha = 30.44^{\circ}$

Lift and drag coefficients vary by about 5 and 50 counts respectively

Unsteady computations, $\alpha = 32.942^{\circ}$

 Lift and drag coefficients vary by about 5 and 50 counts respectively

Outline

2 Solver and Methodology

3 Results

4 Conclusions

Concluding remarks

Conclusions

- High lift computations for configurations 1 and 8 of NASA Trap Wing on various hybrid unstructured grids using flow solver HiFUN are presented
- The ability of code HiFUN to accurately predict integrated force coefficients has been demonstrated
- Though the solution adaptive grids show promise in terms of capturing more accurate pressure distribution compared to the base grid, further analysis is needed to understand their ability to predict accurate integrated force and moment coefficients

Concluding remarks

Conclusions continued

- Inclusion of brackets does not seem to enhance the accuracy of prediction of integrated coefficients
- Unsteady computations reveal that the flow is grossly steady even at higher incidences near maximum lift coefficient

Acknowledgments

Scope Solver and Methodology Results Conclusions

- Gopalakrishna N. (CAd Lab): Bracket study
- Partha Mondal (CAd Lab): Unsteady study, presentation
- Parthiban A. (Sandl): Grids for Configuration 1 with brackets

Thank you

Thank you

Thank you