CFD computations for NASA TRAP WING using the code HiFUN

Ravindra K., Nikhil Vijay Shende & N. Balakrishnan
Computational Aerodynamics Laboratory,
Department of Aerospace Engineering,
Indian Institute of Science, Bangalore 560012

First AIAA High Lift Prediction Workshop, Chicago, IL
June 26–27, 2010
Outline

1. Introduction
2. Typical grids
3. Results: Case 1–Grid convergence
4. Conclusions
Outline

1. Introduction
2. Typical grids
3. Results: Case 1–Grid convergence
4. Conclusions
Introduction

Tools employed

- Grid generation for NASA TRAP WING is carried out using GAMBIT and TGRID, commercial grid generators from ANSYS available at Supercomputer Education and Research Centre (SERC), IISc.

- Flow computations for TRAP WING are performed using the code HiFUN, a commercial flow solver from Simulation and Innovation Engineering Solutions (SandI) available at CAd Lab, Department of Aerospace Engineering, IISc.
Tools employed continued

- Post-processing is carried out using TECPLLOT available at SERC, IISc.
- The compute platform used in the present study is IBM Blue Gene available at SERC, IISc. Hardware details of Blue Gene are as follows:
 - 4096 2-way SMP nodes (8192 processors)
 - IBM PowerPC 440x5 processors operating at 700 Mhz 32-bit
 - 1 GB main memory per node with a total of 4 TB for the cluster
 - Gigabit network with Cisco 6500 Gigabit switch.
Algorithmic features

- Unstructured cell centre finite volume methodology.
- Higher order accuracy: linear reconstruction procedure.
- Flux limiting: Venkatakrishnan Limiter.
- Inviscid flux computation: Roe scheme.
- Convergence acceleration: matrix free symmetric Gauss-Seidel relaxation procedure.
- The viscous flux discretization: Green–Gauss theorem based diamond path reconstruction.
- Eddy viscosity computation: Spalart Allmaras TM.
- Parallelization: MPI.
Config 1: Surface grids

Coarse
Field cells: 7695034

Medium
21903245

Fine
63305904
Config 1: Surface grids, tip zoomed view

Coarse

Medium

Fine
Configuration 1: Grid details

<table>
<thead>
<tr>
<th>Grid details</th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Nodes</td>
<td>3088347</td>
<td>8188411</td>
<td>22419724</td>
</tr>
<tr>
<td>Field Cells</td>
<td>7695034</td>
<td>21903245</td>
<td>63305904</td>
</tr>
<tr>
<td>Boundary Nodes</td>
<td>135004</td>
<td>236077</td>
<td>527552</td>
</tr>
<tr>
<td>Boundary Faces</td>
<td>263557</td>
<td>459285</td>
<td>1035372</td>
</tr>
<tr>
<td>BL 1st – Cell (in)</td>
<td>0.00020</td>
<td>0.00013</td>
<td>0.00009</td>
</tr>
<tr>
<td>BL Cells</td>
<td>21</td>
<td>31</td>
<td>36</td>
</tr>
</tbody>
</table>

Note

Boundary layer is grown using aspect ratio based algorithm.
Computational details

Resource details

- Grid: Medium grid for configuration 1 with about 21 million field cells
- Computer Platform: Blue Gene with IBM PowerPC processors
- Operating system: Unix
- Compiler: XL FORTRAN 90
Resource details continued

- Number of processors: 128
- Memory requirement of HiFUN: Approximately 800 MB per million of grid size
- Convergence criterion: 9–10 decades fall in energy residue with change in drag count over 100 iterations to be less than 1
- Number of iterations: Typically 6000–8000
- Run time Wall clock: 60–80 hours
- Expected run time on 128 nodes of a Xeon based cluster: 15–20 hours (based on our experience in SPICES–09)
Outline

1. Introduction
2. Typical grids
3. Results: Case 1–Grid convergence
4. Conclusions
3 Results: Case 1–Grid convergence

- Streamlines: $\alpha = 13^\circ$
- Streamlines: $\alpha = 28^\circ$
- Cp comparison: $\alpha = 13^\circ$
- Cp comparison: $\alpha = 28^\circ$
- Integrated coefficients comparison
- Typical convergence histories
Config 1 streamlines: Overall view

$M_\infty = 0.2$, $Re_\infty = 4.3$ million, $\alpha = 13^\circ$

With grid refinement, a significant difference in separation pattern can be seen on the body pod above the flap.
Config 1 streamlines: Main element

$M_\infty = 0.2$, $Re_\infty = 4.3 \text{ million}$, $\alpha = 13^\circ$

Flow on main element is predominantly chord–wise.
Config 1 streamlines: Flap–body pod

$M_\infty = 0.2$, $Re_\infty = 4.3$ million, $\alpha = 13^\circ$

The bubble at flap–body pod junction grows in size with grid refinement.
Config 1 streamlines: Tip region

\[\infty = 0.2, \ \text{Re}_\infty = 4.3 \text{ million}, \ \alpha = 13^\circ \]

The span-wise extent and chord-wise position of separation line on the flap upper surface does not change with grid refinement.
3 Results: Case 1–Grid convergence

- Streamlines: $\alpha = 13^\circ$
- Streamlines: $\alpha = 28^\circ$
- Cp comparison: $\alpha = 13^\circ$
- Cp comparison: $\alpha = 28^\circ$
- Integrated coefficients comparison
- Typical convergence histories
Config 1 streamlines: Overall view

$M_\infty = 0.2, \quad Re_\infty = 4.3 \text{ million}, \quad \alpha = 28^\circ$

The complex flow over body pod exhibits multiple separation and re-attachment lines.
Config 1 streamlines: Main element

$M_{\infty} = 0.2$, $Re_{\infty} = 4.3 \text{ million}$, $\alpha = 28^\circ$

Flow on main element is predominantly chord–wise.
Config 1 streamlines: Flap–body pod

\[M_\infty = 0.2, \quad Re_\infty = 4.3 \text{ million}, \quad \alpha = 28^\circ \]

The separation bubble size at flap–body pod junction is unaffected with grid refinement (unlike for \(\alpha = 13^\circ \) case).
Config 1 streamlines: Tip region

\(M_\infty = 0.2, \ Re_\infty = 4.3 \ million, \ \alpha = 28^\circ \)

The span-wise extent and chord-wise position of separation line on the flap upper surface does not change with grid refinement (also for \(\alpha = 13^\circ \) case).
Results: Case 1–Grid convergence

- Streamlines: $\alpha = 13^\circ$
- Streamlines: $\alpha = 28^\circ$
- Cp comparison: $\alpha = 13^\circ$
- Cp comparison: $\alpha = 28^\circ$
- Integrated coefficients comparison
- Typical convergence histories
Config 1: Cp comparison on slat

\[M_\infty = 0.2, \, Re_\infty = 4.30 \text{ million}, \, \alpha = 13^\circ \]

- Good Cp comparison on upper surface at each station.
- Poor Cp comparison on lower surface involving underbelly bubble: limitation of turbulence model.
Config 1: Cp comparison on main element

$M_\infty = 0.2, \ Re_\infty = 4.30 \ million, \ \alpha = 13^\circ$

- Good Cp comparison at 17 % & 50 % stations.
- Inadequate grid resolution to capture tip vortices (even) on fine grid has resulted in not-so-good Cp comparison beyond mid-chord location on upper surface at 98 % station.
Config 1: Cp comparison on flap

\[M_\infty = 0.2, \quad Re_\infty = 4.30 \text{ million}, \quad \alpha = 13^\circ \]

- **17 %**
 - Good Cp comparison at 17 % & 50 % stations.

- **50 %**
 - Inadequate grid resolution to capture tip vortices (even) on fine grid has resulted in not–so–good Cp comparison on upper surface at 98 % station.

- **98 %**
Introduction Typical grids Results: Case 1–Grid convergence Conclusions

Outline

3 Results: Case 1–Grid convergence

- Streamlines: $\alpha = 13^\circ$
- Streamlines: $\alpha = 28^\circ$
- C_p comparison: $\alpha = 13^\circ$
- C_p comparison: $\alpha = 28^\circ$
- Integrated coefficients comparison
- Typical convergence histories
Config 1: Cp comparison on slat

\(M_\infty = 0.2, \ Re_\infty = 4.30 \ \text{million}, \ \alpha = 28^\circ \)

- Good Cp comparison on upper surface at all stations.
- Reduction in (disappearance of) separation on lower surface has led to good Cp prediction at all stations.
Config 1: Cp comparison on main element

$M_\infty = 0.2, \text{Re}_\infty = 4.30 \text{ million, } \alpha = 28^\circ$

- 17%
- 50%
- 98%

- Good Cp comparison at 17% & 50% stations.
- Inadequate grid resolution to capture tip vortices (even) on fine grid has resulted in not-so-good Cp comparison beyond quarter-chord location on upper surface at 98% station.
Config 1: Cp comparison on flap

\(M_\infty = 0.2, \, Re_\infty = 4.30 \text{ million}, \, \alpha = 28^\circ \)

- **17 %**
 - Good Cp comparison at 17 % station.

- **50 %**
 - Severe adverse pressure gradient on the flap leading to a possible flow separation not captured in the numerics; compounded by inadequate resolution of tip vortices leading to not-so-good Cp comparison at 50 % and 98 % stations.

- **98 %**
3 Results: Case 1–Grid convergence

- Streamlines: $\alpha = 13^\circ$
- Streamlines: $\alpha = 28^\circ$
- Cp comparison: $\alpha = 13^\circ$
- Cp comparison: $\alpha = 28^\circ$

- Integrated coefficients comparison
- Typical convergence histories
Comparison of Lift coefficient

\[M_\infty = 0.2, \quad Re_\infty = 4.3 \text{ million} \]

With grid refinement, the computed lift coefficients for \(\alpha = 13^\circ \) and \(\alpha = 28^\circ \) are tending to the experimental values.
Introduction Typical grids Results: Case 1–Grid convergence Conclusions

Comparison of Drag coefficient

$M_\infty = 0.2$, $Re_\infty = 4.3$ million

Overall view Zoom: $\alpha = 13^\circ$ Zoom: $\alpha = 28^\circ$

- With grid refinement, the computed drag coefficient for $\alpha = 28^\circ$ is tending to the experimental value.
Comparison of Moment coefficient

$M_\infty = 0.2, \text{Re}_\infty = 4.3 \text{ million}$

With grid refinement, the computed moment coefficients for $\alpha = 13^\circ$ and $\alpha = 28^\circ$ are tending to the experimental values.
Results: Case 1–Grid convergence

- Streamlines: $\alpha = 13^\circ$
- Streamlines: $\alpha = 28^\circ$
- Cp comparison: $\alpha = 13^\circ$
- Cp comparison: $\alpha = 28^\circ$
- Integrated coefficients comparison
- Typical convergence histories
Convergence history: Fine grid, \(\alpha = 13^0 \)

Fine grid: \(M_\infty = 0.2, \, Re_\infty = 4.3 \) million

Relative Residue

\(C_L, C_D \) evolution

\(\Delta C_L, \Delta C_D \) counts
Introduction

Convergence history: Fine grid, $\alpha = 28^0$

Fine grid: $M_\infty = 0.2$, $Re_\infty = 4.3$ million

Relative Residue C_L, C_D evolution $\Delta C_L, \Delta C_D$ counts
Outline

1 Introduction

2 Typical grids

3 Results: Case 1–Grid convergence

4 Conclusions
Conclusions

- In the present work, results of RANS computations for NASA TRAP WING using the code HiFUN are presented.
- During grid generation the guidelines provided by workshop committee are followed, except for the number of field cells.
Concluding remarks

Grid convergence study: $\alpha = 13^\circ$ and $\alpha = 28^\circ$

- Separation bubble is seen at flap–body pod junction for both angles of attack.
- At $\alpha = 13^\circ$, separation bubble becomes more pronounced with grid refinement.
- Separation line is seen on upper surface of flap for both angles of attack.
- The chord-wise location and span-wise extent of the separation line does not change with grid refinement.
Concluding remarks

Grid convergence study: $\alpha = 13^\circ$ and $\alpha = 28^\circ$

- An overall good comparison of computed and experimental Cp distributions can be seen on upper surfaces of slat, main element and flap.
- Cp comparison on the lower surface of slat in the underbelly separation region is poor owing to the limitation of turbulence model.
- Better prediction of Cp for higher incidence ($\alpha = 28^\circ$) on the slat lower surface is indicative of better flow alignment at higher incidences resulting in subdued separation activity.
Concluding remarks

Grid convergence study: $\alpha = 13^\circ$ and $\alpha = 28^\circ$

- Cp comparison near the tips of main element and flap is not-so-good owing to inadequate grid resolution in capturing vortices and can be improved with further grid refinement.

- With grid refinement, lift, drag and moment coefficients tend towards experimental values.
Acknowledgments

Authors wish to thank

- Prof. Govindarajan, Chairman, Supercomputer Education and Research Centre (SERC), IISc for the use of IBM Blue Gene.
- Mr. Satish Regode for his help in post-processing the results.
- Dr. P. R. Viswanath (Boeing, India) for his useful comments on the work.
- Dr. Mori Mani (Boeing) for kindly agreeing to make this presentation on their behalf.
Thank you

Contact

- Ravindra K.: ravindra.k@sandi.co.in
- Nikhil Vijay Shende: nikvijay@aero.iisc.ernet.in
- N. Balakrishnan: nbalak@aero.iisc.ernet.in