

NASA Trap Wing Model OVERFLOW Analysis

Anthony J. Sclafani, Jeffrey P. Slotnick, John C. Vassberg

The Boeing Company Boeing Research & Technology Huntington Beach, California, USA

1st AIAA CFD High Lift Prediction Workshop Chicago, Illinois 26-27 June 2010

- Flow Solver / Computing Platform
- Grid Information
- Convergence Histories and Residuals
- Results
 - Test Case 1: Grid Convergence Study
 - Test Case 2: Flap Deflection Prediction Study
 - Test Case 3: Slat and Flap Support Effects Study
- Conclusions
- Future Work

NASA Trap Wing OVERFLOW Analysis Flow Solver and Computing Platform

OVERFLOW MPI version 2.1ad – Default Setup for High Lift Studies

- Roe upwind differencing
- Spalart-Allmaras (SA) turbulence model version "fv3"
- full Navier-Stokes
- Iow-Mach preconditioning
- steady state
- > all cases run from scratch (i.e., freestream initial condition)

Parallel Processing on a PC Cluster

- Linux 64bit operating system with 1968 CPUs on 578 nodes
 - 120 2.6GHz Opteron dual core nodes with 8GB of RAM
 - 80 3.0GHz Xeon dual dual-core nodes with 12GB of RAM
 - 112 2.2GHz Opteron dual quad-core nodes with 16GB of RAM
- Config 1 medium grid (25 million points) run on 24 processors
 - 18.7 seconds per iteration
 - Full convergence reached after 5000 iterations
 - Roughly 26 hours of wall clock time needed per case

NASA Trap Wing OVERFLOW Analysis Grid Information for "Str-Overset-A-v3"

Structured Overset Grid Systems

- 34 zones for Bracket-Off (28 surface abutting)
- 62 zones for Bracket-On (56 surface abutting)

Config 1 and Config 8 (body-slat-wing-flap)

Grid	Points	1/N ^{2/3} x 10 ⁵	1 st Cell Size	у+	Constant Cells	Growth Rate
Coarse	10,653,004	2.07	.00017 in	.87	2	1.25
Medium	24,965,818	1.17	.00013 in	.66	3	1.18
Fine	83,302,438	0.52	.00009 in	.44	4	1.12
Extra-Fine	281,560,012	0.23	.00006 in	.29	6	1.08

Config 1 (body-slat-wing-flap-brackets)

Grid	Points	1/N ^{2/3} x 10 ⁵	1 st Cell Size	у+	Constant Cells	Growth Rate
Medium	58,175,676	0.67	.00013 in	.66	3	1.18

NASA Trap Wing OVERFLOW Analysis Convergence Histories – Lift

NASA Trap Wing OVERFLOW Analysis Convergence Histories – Drag

NASA Trap Wing OVERFLOW Analysis Convergence Histories – Pitching Moment

Config 1 Force and Moment Plus/Minus "Error Band"

Given as Percent Total

Medium Grid

$\alpha =$	13°
------------	-----

α	ΔC_{L}	ΔC_{D}	ΔC _M
13º	.03	.05	.06
21º	.02	.03	.03
28°	.03	.07	.19
34º	.01	.04	.10

grid	ΔC_{L}	ΔC_{D}	ΔC_{M}
coarse	.01	.03	.02
medium	.03	.05	.06
fine	.06	.13	.16
extra-fine	1.01	1.45	1.33

NASA Trap Wing OVERFLOW Analysis Config 1 Residuals

NASA Trap Wing OVERFLOW Analysis Config 1 Turbulence Model Residuals

AIAA HiLiftPW-1

When comparing CFD with wind tunnel data, remember the following.

- Brackets
- Transition
- Walls
- Aeroelastics

Test Case 1 Grid Convergence Study

Test Case 1 – Grid Convergence Study Config 1: Total Lift at $\alpha = 13^{\circ}$

Test Case 1 – Grid Convergence Study Config 1 and Config 8: Total Lift at $\alpha = 13^{\circ}$

Config 1 (Slat 30, Flap 25) Extra-Fine Grid Solution Config 8 (Slat 30, Flap 20) Extra-Fine Grid Solution

- Config 8 extra-fine grid solution shows a similar break in lift but the inboard flap separation is relatively small.
- > The drop in lift at $\alpha = 13^{\circ}$ going from the fine grid to the extra-fine grid does not appear to be driven by inboard flap separation.

AIAA HiLiftPW-1

Chicago, IL

Test Case 1 – Grid Convergence Study Section C_l Comparison at $\alpha = 13^{\circ}$

The extra-fine grid solution has reduced loading across the entire semi-span for all three elements.

AIAA HiLiftPW-1

Chicago, IL

Test Case 1 – Grid Convergence Study

Config 1: Total Lift at $\alpha = 28^{\circ}$

Test Case 1 – Grid Convergence Study Config 1 Lift Curve Comparison – Grid Effect

June 2010

Test Case 1 – Grid Convergence Study Config 1: Total Drag & Pitching Moment

BOEING

AIAA HiLiftPW-1

Test Case 1 – Grid Convergence Study Image: Config 1: Pressure Comparison at Flap Forward Spart High Lift Prediction Workshop

AIAA HiLiftPW-1

Test Case 1 – Grid Convergence Study Config 1: Pressure Comparison at Flap Aft Span

NASA Trap Wing OVERFLOW Analysis Skin Friction for Config 8, $\alpha = 13^{\circ}$

Test Case 2

Flap Deflection Prediction Study

Test Case 2 – Flap Deflection Prediction Study

Lift Comparison

Test Case 2 – Flap Deflection Prediction Study Drag Comparison: C_L vs C_D and C_L vs C_D - $C_L^2/\pi AR$

By removing idealized induced drag, a more detailed polar comparison can be made.

- \blacktriangleright LaRC data show cross-over C₁ to be at 1.5, above which Config 8 has higher drag
- \blacktriangleright OVERFLOW C₁ cross-over is at 2.4
- Larger difference seen in Config 8 polar

AIAA HiLiftPW-1

Chicago, IL

June 2010

Test Case 2 – Flap Deflection Prediction Study

Drag Comparison: C_D vs α

Test Case 2 – Flap Deflection Prediction Study *Pitching Moment Comparison:* C_L vs C_M

Test Case 2 – Flap Deflection Prediction Study *Pitching Moment Comparison:* C_M vs α

Slide 31 of 40

Test Case 2 – Flap Deflection Prediction Study Minimum Pressure Comparison: Config 1

Using J. P. Mayer's 0.7 vacuum ($M_{\infty}^2 C_p = -1$) presented by A.M.O. Smith*

> Slat suction pressure reaches 0.7 vacuum ($C_p = -25$) at $36^\circ < \alpha < 37^\circ$

• Critical semi-span station is $\eta = 0.8$

\succ Stall appears to be driven by the slat \rightarrow slat stalls first followed by wing

*Smith, A. M. O., "High Lift Aerodynamics", 37th Wright Borthers Lecture, Vol. 12 No. 6, JOA, June 1975

AIAA HiLiftPW-1 Chicago, IL

go, IL

June 2010

Test Case 3

Slat and Flap Support Effects Study

Test Case 3 – Support Effects Study Config 1 Bracket Grids*

Medium Grid Sizes

- Bracket-off = 25.0 million
- Bracket-off with refined c-mesh grids = 47.0 million
- Bracket-on with refined c-mesh grids = 58.2 million

* Bracket grids built by Leonel Serrano and Neal Harrison

AIAA HiLiftPW-1

Chicag

Test Case 3 – Support Effects Study *Lift Comparison*

Test Case 3 – Support Effects Study Drag and Pitching Moment Comparison

Test Case 3 – Support Effects Study Skin Friction and Surface Streamline Comparison

Test Case 3 – Support Effects Study Pressure Comparison at $\alpha = 28^{\circ}$, $\eta = 50\%$

AIAA HiLiftPW-1

<u>Test Case 1 – Grid Convergence Study</u>

- The extra-fine grid produces solutions that appear to be in a different family than the coarse, medium, and fine grid.
 - hysteresis may be the cause ... additional runs are being made
- The coarse, medium, and fine grid C_L results are close to linear when plotted against 1/N^{-2/3} and agree reasonably well with test data.
- > In general, pressures are in good agreement with test data.
 - wing and flap pressures at the tip are the exception
 - flap trailing-edge pressures predicted best by extra-fine grid

Test Case 2 – Flap Deflection Prediction Study

- Config 1 lift, drag, and pitching moment agree well with test data through stall.
 - C_{Lmax} is over-predicted by 2%
- > More discrepancy seen in the Config 8 force and moment data comparison.

Test Case 3 – Slat and Flap Support Effects Study

- Bracket-on results move away from test data indicating the bracket-off data is not as good as it appears.
- > As with the extra-fine grid solutions, adding the supports leads to early stall.

NASA Trap Wing OVERFLOW Analysis *Future Work*

- Hysteresis, extra-fine grid solutions
- Brackets
- Laminar flow
- Off-body grid refinement at tip

• SA with Rotational and Curvature Correction (SARC)

