Applied Research Group
Seeking Answers, Deploying Solutions

Intelligent Light
Earl P.N. Duque
Manager of Applied Research
Intelligent light

HI LIFT PREDICTION WORKSHOP 2
Outline

• Purpose
 – IL’s contribution to the knowledge base
 – Get current with OVERFLOW and CFD pain (I’ve been in management & teaching too long …)
 – Create demonstration cases for our own Applied Research Group projects

• Demonstrate Large scale big data post processing and effective workflow processes

• Provide a different method to the community
AIAA High Lift Prediction Workshop

• **Case 1**
 - Coarse, medium, fine and extra fine grid
 - SA Turbulence model
 - Alpha – 7, 16, 18.5, 20, 21, 22.4
 - Steady
 - Blind Run up to 2600 Steps (Still Running…)

• **Case 2**
 - Medium grid
 - High Reynolds
 - Alpha – 0, 7, 12, 16, 18.5, 20, 21, 22.4
 - SA Turbulence Model
 - Fully Turbulent
 - Blind Run Up to ~10k Steps
 - Low Reynolds
 - SA Turbulence Model
 - Fully Turbulent (Blind Run Up to ~10k Steps)
 - Transition (Menter-Langtry) (In progress)
 - k-W-SST (In progress)
 - k-W-SST Unsteady (In progress)
OVERFLOW and FV Workflows

• Solver - OVERFLOW-2.2e
 – Cray XE6
 – 128-1024 cores (75-85% // Efficiency)
 – Methodologies
 • RHS - Roe upwind
 • LHS – Scalar Penta
 • Full Multi-Grid
 • Full Viscous Terms

• FieldView 13.2 & 14-beta
 – Cray XE6 – 16 cores
 – Automated Batch Post-Processing
 – XDB workflow for surface data extraction
 – FVX + gnuplot for 2D plotting
 – Multi-Window Comparisons
Issue with Large Scale Post-Processing

• Writing, reading or copying large results files takes a long time
 – Wastes engineering time
 – Important data is quite small
• Slow network speed
 – Performance is often unpredictable
• Sharing large results files takes much space and time
• Analyzing many datasets requires repeating many steps
• Graphics hardware outpacing software development
• Data Extracts – XDB Workflows
Volume Data Processing…

Volume Data

READ

CREATE

Post-processing Objects

POSTPROCESS

Actions on Objects:
- Visualize/Render
- Animate/Sweep Cache
- Integrate Forces
- Probe/plot values
- Output Pics/movies

Compute Objects:
- Geometry
- Cutting Planes
- Iso-surfaces
- Streamlines

WRITE

XDB File
...to XDB Workflows

XDB File

Post-processing Objects

Actions on Objects:
- Visualize/Render
- Animate/Sweep Cache
- Integrate Forces
- Probe/plot values
- Output Pics/movies

READ/APPEND

CREATE

POSTPROCESS

Compute Objects:
- Geometry
- Cutting Planes
- Iso-surfaces
- Streamlines

READ/APPEND

XDB File

- Full Numerical Fidelity
- Normals included
- Smaller files (10X-100X)
- Lower memory (10X-100X)
HiLiftPW 2 General Workflow

- Run the OVERFLOW2 case 128 – 1056 processors
- Submit post processing job, 16 procs in batch directly on remote Cray XE6 system
 - Boundary Surface Extracts
 - Coordinate cut planes
 - Velocity Profiles
 - Surface Streamlines
- Create images, tables and 2D plots
 - Perform all on the big iron especially if good graphics connected to system or …
 - Move extracts and solver output to local workstation
XDB Data reduction

Case 1

<table>
<thead>
<tr>
<th>Grid Size</th>
<th># Overset Grids</th>
<th>Grid Points (10^6)</th>
<th>Grid File Size</th>
<th>Soln File Size</th>
<th>Coordinate Cut Plans (3 planes) 7 scalars</th>
<th>Boundary Surface 12 scalar variables</th>
<th>Surface Streams Medium seed density, 2 variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>44</td>
<td>29.4</td>
<td>758M</td>
<td>1.6G</td>
<td>14.1M</td>
<td>24M</td>
<td>435M</td>
</tr>
<tr>
<td>Medium</td>
<td>44</td>
<td>69.0</td>
<td>1.8G</td>
<td>3.6G</td>
<td>25.8M</td>
<td>41M</td>
<td>411M</td>
</tr>
<tr>
<td>Fine</td>
<td>44</td>
<td>230.7</td>
<td>6.1G</td>
<td>13G</td>
<td>58M</td>
<td>92M</td>
<td>524M</td>
</tr>
<tr>
<td>Extra-Fine</td>
<td>44</td>
<td>544.5</td>
<td>15G</td>
<td>29G</td>
<td>98M</td>
<td>160M</td>
<td>530M</td>
</tr>
</tbody>
</table>
Force and moments

Case 1 - AoA vs. CL

Case 1-CL vs. CD

Case 2 - AoA vs. CL

Case 2 - CL vs. CD
Surface Coefficients

- Extract - Boundary Surface
 - Slat, Main, Flap, Body
 - Cp, Cf, Cfx, Cfy, Cfz, Surface Normals
- Further processed on local workstation
- Take slices at the pressure stations
 - Use thresholding on the provided workshop equations and find cell center of resulting polygon
 - Output 2D plot data to standard formats
- Automatically create multi plot comparisons using your favorite 2d Plot program (i.e. Gnuplot)
Case 1 – Grid Refinement Effect @ 7, 18.5, 21, 22.4 Degrees
Case 1 High Lift Prediction Workshop

Alpha = 7
Grid Density = coarse
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop
Alpha = 7
Grid Density = medium
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop
Alpha = 7
Grid Density = fine
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop

Alpha = 7
Grid Density = extrafine
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop

Alpha = 18.5
Grid Density = coarse
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop

Alpha = 18.5
Grid Density = medium
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop
Alpha = 18.5
Grid Density = fine
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop
Alpha = 18.5
Grid Density = extrafine
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop
Alpha = 21
Grid Density = coarse
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop

Alpha = 21
Grid Density = medium
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop

Alpha = 21
Grid Density = fine
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop
Alpha = 21
Grid Density = extrafine
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop
Alpha = 22.4
Grid Density = coarse
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop

Alpha = 22.4
Grid Density = medium
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop

Alpha = 22.4
Grid Density = fine
Experiment = RUN238_Re=15.1e6
Case 1 High Lift Prediction Workshop
Alpha = 22.4
Grid Density = extrafine
Experiment = RUN238_Re=15.1e6
Case 2 – High and Low Reynolds Number Effect @ 7, 18.5 & 21 Degrees
Case 2 High Lift Prediction Workshop
Alpha = 7
Grid Density = medium
Experiment = RUN238_Re=15.1e6
Case 2 High Lift Prediction Workshop

Alpha = 7
Grid Density = medium
Experiment = RUN29293_Re=1.35e6
Case 2 High Lift Prediction Workshop
Alpha = 18.5
Grid Density = medium
Experiment = RUN238_Re=15.1e6
Case 2 High Lift Prediction Workshop
Alpha = 18.5
Grid Density = medium
Experiment = RUN29293 Re=1.35e6
Case 2 High Lift Prediction Workshop
Alpha = 21
Grid Density = medium
Experiment = RUN238_Re=15.1e6
Case 2 High Lift Prediction Workshop
Alpha = 21
Grid Density = medium
Experiment = RUN29293_Re=1.35e6
Velocity comparisons

- Line Plot Extractions
- Directly sample and export velocity plot data to disk
 - Experiment vs Case 1 coarse to exfine
 - Experiment vs Case2 Reynolds number
Experiment vs Case 1

Velocity Profiles
Hi Reynolds
7, 18.5, 21 Degrees
Effect of Grid Refinement coarse, medium, fine, extra-fine
Velocity profiles 7 Deg. – Hi Rey
Velocity profiles 18.5 Deg. – Hi Rey
Velocity profiles 21 Deg. – Hi Rey
Experiment vs Case 2

Effect of Reynolds Number
7, 18.5, 22.4 m/s
Velocity profiles 7 Deg. – Case 2

- P1 WB L1
- P1 WB L2
- P1 wC L1
- P1 wD L1
- P2 wb L1
- P2 wb L2
- P2 wD L1
- P2 wE L1
- P2 wE L2
- P3 wE L1
- P3 wE L2
Velocity profiles 18.5 Deg. – Case 2
Velocity profiles 21 Deg. – Case 2
Surface streamlines

- Create surface streamlines using Surface Flow Tool
- Execute script based upon FVX -> .fvp files
- Download the resulting pathline file
- Load in to interactive session for exploration or batch process direct to images
Case 2 Low Reynolds
Summary

• Trending similar to others
• Flow separation of interest
• Unsteady, Turbulence, Convergence?
• Saga Continues
 – Continuing to “run out” solutions across the board
 – Look at transition and unsteady cases more carefully
 – Would like to do AMR
• What have I (re)learned
 – Pay attention to Convergence
 – May be use pre-conditioning
 – Need a structured grid that to enables better load balancing (AMR?)
 – Unsteady needs attention
Future Work

• Run out Case 1
• Run out Case 2
 – High Reynolds
 • Run to Convergence
 • Off Body Flows
 – Low Reynolds
 • Transition (Menter-Langtry) (Finish)
 • k-W-SST (finish)
 • k-W-SST Unsteady (finish)

• XDB Workflow Case Study – July 2013
• AIAA Summer 2014 Paper