HiLiftPW-2
Overview and Grid Systems

Jeffrey Slotnick
The Boeing Company

Mark Chaffin
Cessna Aircraft Company

2nd AIAA CFD High Lift Prediction Workshop
San Diego, California, USA
22-23 June 2013
Outline

• Organizing Committee
• Objectives
• Configuration
• Test Cases
• Agenda
• Participant Statistics
• Grid Systems
• AIAA Special Sessions
• Acknowledgments
Organizing Committee

• Jeffrey Slotnick and Tony Sclafani
 The Boeing Company

• David Levy* and Mark Chaffin
 Cessna Aircraft Company

• Ralf Rudnik and Kerstin Huber
 DLR – German Aerospace Center

• Thomas Wayman
 Gulfstream Aerospace Corporation

• Thomas Pulliam
 NASA Ames Research Center

• Chris Rumsey and Judi Hannon
 NASA Langley Research Center

• Carolyn Woeber
 Pointwise, Inc.

• Dimitri Mavriplis* and Michael Long
 University of Wyoming

* DPW organizing committee member
Objectives

• Assess the numerical prediction capability (meshing, numerics, turbulence modeling, high-performance computing requirements, etc.) of current-generation CFD technology/codes for swept, medium/high-aspect ratio wings in landing/take-off (high-lift) configurations

• Develop practical **modeling guidelines** for CFD prediction of high-lift flowfields

• Advance the understanding of **high-lift flow physics** to enable development of more accurate prediction methods and tools

• Enhance CFD prediction capability to enable practical **high-lift aerodynamic design and optimization**
Configuration

- DLR F11 wing/body high-lift configuration
 - Used for EUROLIFT I test campaigns
 - Rich set of low- and high-Re test data
 - CAD model made available
 - Representative of modern transport high-lift systems
Test Cases

Case 1 – Grid Convergence Study (REQUIRED)
DLR F11 “Config 2”
Slat 26.5 deg, Flap 32 deg (Wing/Body/HL system + SOB Flap Seal)

- Mach = 0.175
- Angles-of-attack to be computed (deg) = 7, 16 (OPTIONAL: 18.5, 20, 21, 22.4)
- Reynolds number = 15.1 million based on mean aerodynamic chord (MAC)
- RUN FULLY TURBULENT

33 Datasets
Case 2 – Reynolds Number Study

DLR F11 “Config 4”

Slat 26.5 deg, Flap 32 deg (Config 2 + Slat Tracks and Flap Track Fairings)

Flow solutions on comparable medium mesh density from Grid Convergence Study

Case 2a (REQUIRED) - Low Reynolds Number Condition

Mach = 0.175
Angles-of-attack to be computed (deg) = 0, 7, 12, 16, 18.5, 19, 20, 21
Reynolds number = 1.35 million based on mean aerodynamic chord (MAC)
RUN FULLY TURBULENT

19 Datasets

Case 2b (REQUIRED) - High Reynolds Number Condition

Mach = 0.175
Angles-of-attack to be computed (deg) = 0, 7, 12, 16, 18.5, 20, 21, 22.4
Reynolds number = 15.1 million based on mean aerodynamic chord (MAC)
RUN FULLY TURBULENT

20 Datasets

Case 2c (OPTIONAL) - Low Reynolds Number Condition with Transition

Mach = 0.175
Angles-of-attack to be computed (deg) = 0, 7, 12, 16, 18.5, 19, 20, 21
Reynolds number = 1.35 million based on mean aerodynamic chord (MAC)
RUN WITH SPECIFIED TRANSITION and/or TRANSITION PREDICTION METHODS

4 Datasets
Test Cases

Case 3 – Full Configuration Study (OPTIONAL)
DLR F11 “Config 5”
Slat 26.5 deg, Flap 32 deg (Config 4 + Slat Pressure Tube Bundles)
Flow solutions on comparable medium mesh density from Grid Convergence Study

Case 3a - Low Reynolds Number Condition
Mach = 0.175
Angles-of-attack to be computed (deg) = 0, 7, 12, 16, 18.5, 19, 20, 21
Reynolds number = 1.35 million based on mean aerodynamic chord (MAC)
RUN FULLY TURBULENT and/or RUN WITH TRANSITION

Case 3b - High Reynolds Number Condition
Mach = 0.175
Angles-of-attack to be computed (deg) = 0, 7, 12, 16, 18.5, 20, 21, 22.4
Reynolds number = 15.1 million based on mean aerodynamic chord (MAC)
RUN FULLY TURBULENT and/or RUN WITH TRANSITION

3 Datasets
3 Datasets
Test Cases

Case 4 – Turbulence Model Grid-Convergence Verification Study (OPTIONAL)

2-D bump from http://turbmodels.larc.nasa.gov/bump.html

The purpose of this case is to investigate the consistency in implementation of turbulence models in a controlled study. The grids supplied at the above website must be used.

Mach=0.2
Re=3 million per unit length
Tref=540°R
Participants must run at least the finest 3 supplied grids.
RUN FULLY TURBULENT
<table>
<thead>
<tr>
<th>Participant #</th>
<th>Grid Type</th>
<th>Flow Solver</th>
<th>Case 1</th>
<th>Case 2a</th>
<th>Case 2b</th>
<th>Case 2c</th>
<th>Case 3a</th>
<th>Case 3b</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>002.1</td>
<td>Uns</td>
<td>FUN3D</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002.2</td>
<td>Str-Blocked</td>
<td>CFL3D</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003.1</td>
<td>Str-Overset</td>
<td>OVERFLOW</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>003.2</td>
<td>Str-Overset</td>
<td>OVERFLOW</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003.3</td>
<td>Str-Overset</td>
<td>OVERFLOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Uns</td>
<td>CFD++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>005.1</td>
<td>Uns</td>
<td>HiFUN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>005.2</td>
<td>Uns</td>
<td>HiFUN</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>Uns</td>
<td>FUN3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>007.1</td>
<td>Uns</td>
<td>UG3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>007.2</td>
<td>Uns</td>
<td>Cflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Uns</td>
<td>CRUNCH CFD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>009</td>
<td>Str-Overset</td>
<td>OVERFLOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010.1</td>
<td>Uns</td>
<td>CFD++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010.2</td>
<td>Uns</td>
<td>CFD++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010.3</td>
<td>Uns</td>
<td>CFD++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011.1</td>
<td>Str-Blocked</td>
<td>NSMB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>011.2</td>
<td>Str-Blocked</td>
<td>NSMB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>Cartesian/LB</td>
<td>PowerFlow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>013</td>
<td>Str-Blocked</td>
<td>UPACS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>Uns</td>
<td>Unicom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>015.1</td>
<td>Uns</td>
<td>CFX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>015.2</td>
<td>Uns</td>
<td>Fluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>Str-Overset</td>
<td>elsA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>017</td>
<td>Str-Blocked</td>
<td>COBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>Str-Blocked</td>
<td>VULCAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>020</td>
<td>Str-Overset</td>
<td>OVERFLOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>Uns</td>
<td>Tau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>Uns</td>
<td>PHASTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>Uns</td>
<td>NSU3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>024.1</td>
<td>Uns</td>
<td>Edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>024.2</td>
<td>Uns</td>
<td>Edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>Uns</td>
<td>NSU3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>Str-Blocked</td>
<td>Mflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>Uns</td>
<td>Fluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>028</td>
<td>Lattice/LB</td>
<td>Xflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>029</td>
<td>Lattice/LB</td>
<td>Xflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>End</td>
<td>DAY 1 - Saturday, June 22</td>
<td>DAY 2 - Sunday, June 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00 AM</td>
<td>8:20 AM</td>
<td>Registration</td>
<td>Intelligent Light Duque</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:20 AM</td>
<td>8:40 AM</td>
<td></td>
<td>Penn State University Coder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:40 AM</td>
<td>9:00 AM</td>
<td></td>
<td>Boeing/NASA ARC Sclafani/Pulliam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 AM</td>
<td>9:20 AM</td>
<td>Overview/Grid Systems</td>
<td>ONERA Wiart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:20 AM</td>
<td>9:40 AM</td>
<td>Wind Tunnel/Test Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40 AM</td>
<td>10:00 AM</td>
<td>Cessna Aircraft Company</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 AM</td>
<td>10:20 AM</td>
<td>NASA LaRC</td>
<td>Exa GmbH Konig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:20 AM</td>
<td>10:40 AM</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:40 AM</td>
<td>11:00 AM</td>
<td></td>
<td>Bombardier Aerospace Langlois</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td>11:20 AM</td>
<td>University of Wyoming</td>
<td>Kawasaki Heavy Industries Nagata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:20 AM</td>
<td>11:40 AM</td>
<td>FOI</td>
<td>Indian Institute of Science Balakrishnan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:40 AM</td>
<td>12:00 PM</td>
<td>CRAFT Tech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 PM</td>
<td>12:20 PM</td>
<td>LUNCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:20 PM</td>
<td>12:40 PM</td>
<td></td>
<td>University of Colorado Boulder Chitale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:40 PM</td>
<td>1:00 PM</td>
<td></td>
<td>KTH Hoffman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 PM</td>
<td>1:20 PM</td>
<td>ANSYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:20 PM</td>
<td>1:40 PM</td>
<td>Sasanapuri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:40 PM</td>
<td>2:00 PM</td>
<td>Metacomp Technologies</td>
<td>CARDC Chen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 PM</td>
<td>2:20 PM</td>
<td>JAXA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:20 PM</td>
<td>2:40 PM</td>
<td>TATA Consultancy Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:40 PM</td>
<td>3:00 PM</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>3:20 PM</td>
<td>Polytechnique Montreal/Icube/CFS Eng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:20 PM</td>
<td>3:40 PM</td>
<td>U de San Buenaventura/U de los Andes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:40 PM</td>
<td>4:00 PM</td>
<td>Texas A&M University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 PM</td>
<td>4:20 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:20 PM</td>
<td>4:40 PM</td>
<td>Day 1 Wrap-Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:40 PM</td>
<td>5:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Participant Guidelines & Information

• All participant presentations will be 15 minutes with 5 minutes Q/A (please wait until speaker is finished to ask questions)
• Presentations will be uploaded to the HiLiftPW website (http://hiliftpw.larc.nasa.gov) after the workshop
• Updates (if desired) to the datasets will be collected after the workshop
Participant Statistics

- **26** total presentations (24% increase from HiLiftPW-1)
- Representation from **11** countries (38% increase)
- ~**60%** non-US participation (50% increase)
Participant Statistics (2)

- Broad participation from aerospace community
- Significant increase in participation from academia compared to HiLiftPW-1
Participant Statistics (3)

- **37** total datasets (+2 compared to HiLiftPW-1)
- Most participants used committee-generated grid systems

![Pie chart showing the distribution of datasets generated by committee and participant.](chart.png)
Participant Statistics (4)

- More balanced use of structured or unstructured grids compared to HiLiftPW-1

![Pie chart](image)
Outline

- Organizing Committee
- Objectives
- Configuration
- Test Cases
- Agenda
- Participant Statistics
- Grid Systems
- AIAA Special Sessions
- Acknowledgments
Gridding Guidelines

- Approximate initial spacing normal to all viscous walls ($Re=15.1M$ based on $CREF=MAC=347.09\text{ mm}$):
 - Coarse: $y+ \sim 1.0\ dy \sim 0.00055\ mm$
 - Medium: $y+ \sim 2/3\ dy \sim 0.00037\ mm$
 - Fine: $y+ \sim 4/9\ dy \sim 0.00024\ mm$
 - Extra-fine: $y+ \sim 8/27\ dy \sim 0.00016\ mm$

- Same grids to be used for low Re ($1.35M$) cases
- Total grid size to grow ~3X between each grid level for grid convergence cases
 - For structured meshes, this growth is ~1.5X in each coordinate direction
- Growth rate of cell sizes in the viscous layer should be < 1.25
 - Include a region with constant cell spacing (growth rate = 1.0) to capture wakes from upstream elements
- Farfield located at ~100 C_{REF}’s for all grid levels
- For the Medium Baseline Grids:
 - Chordwise spacing for wing and tail leading edge (LE) and trailing edge (TE) ~0.1% local chord
 - Spanwise spacing at root and tip ~0.1% local semispan
 - Cell size near fuselage nose and after-body ~1.0% $CREF$

- Wing and Tail Trailing Edge Base:
 - Minimum of 4 cells across TE base for the coarse mesh
 - Minimum of 6 cells across TE base for the medium mesh
 - Minimum of 9 cells across TE base for the fine mesh
 - Minimum of 14 cells across TE base for the extra-fine mesh

- Be multi-grid friendly

No grid size targets specified
<table>
<thead>
<tr>
<th>Series</th>
<th>Type</th>
<th>Number of Points (M)*</th>
<th>Grid Level</th>
<th>Grid Developer (s)</th>
<th>Grid Tool(s)</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Structured</td>
<td>Point-Matched</td>
<td>11</td>
<td>Coarse</td>
<td>Boeing</td>
<td>ICEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>105</td>
<td>Fine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Unstructured</td>
<td>Hexahedral</td>
<td>10</td>
<td>Coarse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101</td>
<td>Fine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Unstructured</td>
<td>Mixed</td>
<td>21</td>
<td>Coarse</td>
<td>DLR</td>
<td>SOLAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td>Fine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Unstructured</td>
<td>Tetrahedral / Mixed</td>
<td>13</td>
<td>X-Coarse</td>
<td>Pointwise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>Coarse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>177</td>
<td>Fine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Unstructured</td>
<td>Tetrahedral / Mixed</td>
<td>10</td>
<td>Coarse</td>
<td>Univ of Wyoming/Cessna</td>
<td>VGRID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>Fine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Structured</td>
<td>Overset</td>
<td>29</td>
<td>Coarse</td>
<td>Boeing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>Medium</td>
<td>CGT, OVERGRID, Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>231</td>
<td>Fine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>545</td>
<td>X-Fine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Case 1
Grid Systems

Committee-supplied Grids, HiLiftPW-2
Case 1

- X-C
- C
- M
- F
- X-F

E (str) overset
D (uns) tet or mixed
C (uns) tet or mixed
B (uns) mixed
A (uns) hex
A (str) 1-to-1

N (number of grid points), millions
Grid Systems

Case 2 Medium Grid
Spanwise Cut at 750mm Wing

B SOLAR
C Pointwise
D VGRID
E Overset
Grid Systems

Case 2 Medium Grid
Spanwise Cut at 750mm
Wing

“Cell Volume” Metric

B SOLAR
C Pointwise
D VGRID
E Overset
Grid Systems

Case 2 Medium Grid
Spanwise Cut at 750mm Flap

B SOLAR
C Pointwise
D VGRID
E Overset
Grid Systems

Case 2 Medium Grid
Spanwise Cut at 750mm Flap

“Cell Volume” Metric
HiLiftPW Timeline

- **Chicago 2010** – HiLiftPW-1
 - SPECIAL SESSIONS – Orlando 2011
 - SPECIAL SESSIONS – New Orleans 2012

- **San Diego 2013** – HiLiftPW-2
 - SPECIAL SESSIONS (PLANNED) – National Harbor 2014
 - SPECIAL SESSIONS (PLANNED) – Atlanta 2014
AIAA Special Sessions

January 2014 (SciTech - National Harbor, MD, USA)
- **13 Papers + Forum** (1 six- and 1 eight-paper session)

<table>
<thead>
<tr>
<th>Overview/Grid/Test Data</th>
<th>KTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ of Wyoming</td>
<td>CD-adapco</td>
</tr>
<tr>
<td>CraftTech</td>
<td>Univ of Colorado</td>
</tr>
<tr>
<td>FOI</td>
<td>Summary</td>
</tr>
<tr>
<td>Exa</td>
<td>Forum Discussion</td>
</tr>
<tr>
<td>DLR</td>
<td></td>
</tr>
<tr>
<td>Metacomp</td>
<td></td>
</tr>
<tr>
<td>Polytechnique Montreal/Icube/CFS Eng</td>
<td></td>
</tr>
</tbody>
</table>

Summer 2014 (APA – Atlanta, GA, USA)
- **14 Papers** (1 six- and 1 eight-paper session)

<table>
<thead>
<tr>
<th>Intelligent Light</th>
<th>Ilsc</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Langley</td>
<td>ONERA</td>
</tr>
<tr>
<td>Ansys</td>
<td>Penn State Univ</td>
</tr>
<tr>
<td>Next Limit</td>
<td>Texas A&M Univ</td>
</tr>
<tr>
<td>Boeing/NASA Ames</td>
<td>CIAM/JSC</td>
</tr>
<tr>
<td>Tata</td>
<td>U San Buena./U Los Andes</td>
</tr>
<tr>
<td>JAXA</td>
<td></td>
</tr>
<tr>
<td>CARDC</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgments

- **DLR**
 Stefan Melber-Wilkending

- **NASA Fundamental Aeronautics Subsonic Fixed Wing (SFW) Aerodynamics Technical Working Group (TWG)**
 Mike Rogers, Rich Wahls, Greg Gatlin

- **AIAA Applied Aerodynamics Technical Committee**
 Jim Guglielmo, Rob Vermeland, Aaron Altman, Hui Hu

- **AIAA Conference Planning Staff**
 Chris Brown, Carmela Brittingham, Megan Scheidt

- **The Boeing Company**
 Raul Mendoza, Karuna Rajagopal, Leonel Serrano, Neil Harrison, C-J Woan
Acknowledgments

A special thanks to the members of the EUROLIFT consortium* for giving permission to use the F11 geometry and test data:

- Airbus-Germany (DASA GmbH)
- Airbus-France (Aerospatiale Matra-Airbus)
- Alenia Aeronautica
- CASA
- CIRA
- Dassault Aviation
- ETW (European Transonic Windtunnel GmbH)
- DLR
- FOI
- IBK (Ingenieurbüro Dr. Kretschmar)
- INTA
- NLR
- ONERA

* EUROLIFT was co-funded by the European Commission
Back-Up
Grid Systems

Case 2 Medium Grid
Cut at X=1990mm
Wing

B SOLAR
C Pointwise
D VGRID
E Overset
Grid Systems

Case 2 Medium Grid
Cut at X=1990mm
Wing

“Cell Volume” Metric

B SOLAR
C Pointwise
D VGRID
E Overset