NSMB contribution to the 2nd High Lift Prediction Workshop

T. Deloze and <u>E. Laurendeau</u> Ecole Polytechnique de Montréal, Canada

AIAA 2014-0913

SciTech 2014, January 15, National Harbor, MD

Introduction Results Conclusion

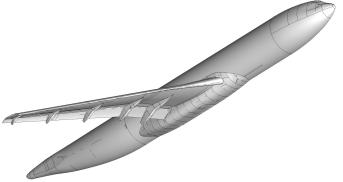
Contents

- Introduction
 - HiLiftPW-2 configuration
 - NSMB CFD solver
 - Dataset performed

Results

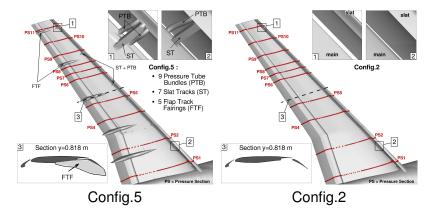
- Convergence study (case 1 of HiLiftPW-2)
- Stall study
- Time-resolution effect

Conclusions



Description of the configuration NSMB CFD solver and parameters Dataset

Configuration of the HiLiftPW-2 : DLR-F11 in landing configuration


full-span slat (26.5°) and flap (32°)

Introduction	Description of the configuration
Results	NSMB CFD solver and parameters
Conclusion	Dataset

Accuracy of the CAD :

- \Rightarrow Simplified Config.2 choose for this numerical study
- \Rightarrow Config.5 closest to the experiment

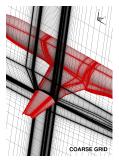
4/35

POLYTECHNIQUE

MONTREAL

Introduction	Description of the configuration
Results	NSMB CFD solver and parameters
Conclusion	Dataset

Grid :


Committee-supplied structured 1-to-1 grids : A_str_1to1_Case1Config2 made by Boeing-Huntington Beach

3 grid sizes :

	cells	dy [mm]	dy / MAC
coarse	9,556,725	0.0006525	1.88e-6
medium	31,998,440	0.000435	1.29e-6
fine	100,561,536	0.00029	0.83e-6

Reference :

$$\begin{array}{rcl} C_{ref} &= \mbox{MAC} &= & 347.09\mbox{mm} \\ S_{ref} &= & 419,130\mbox{mm}^2 \\ (x,y,z)_{ref} &= & (1428.90\,,\,0.0\,,\,-41.61\,)\mbox{mm} \end{array}$$

CFD solver : NSMB (Navier-Stokes Multi-Block) History :

- In 1992, NSMB is developed in an international consortium with industrial partners (Airbus & SAAB Military Aircraft, CFS Engineering) and academic partners in France, Germany and Switzerland (EPFL, SERAM, IMFT, KTH, CERFACS)
- Today, it is developed by EPFL, ETH, Icube, IMFT, TUM, Polytechnique Montreal, CFS Engineering and RUAG and NSMB is being used by Airbus-France, EADS-ST and KTH

Descriptions :

- Finite volume Navier-Stokes solver with multi-blocks definition
- Wide code based on general features of modern CFD (grid flexibility, space discretization schemes, time integration, convergence acceleration, parallel computing, ...)

Parameters of simulations :

All simulations were performed using the following parameters :

- Space discretization : 4th order central scheme with Jameson artificial dissipation
- Time integration : implicit 2nd order backward, LU-SGS
 - steady : local time step, no multigrid
 - unsteady : dual time stepping, multigrid,

 $\Delta t = \Delta t \cdot U_{ref}/c_{ref} = 0.06$ [-]

- Turbulence models : SA, SA Edwards, SA-salsa
- Initial Condition (IC) :
 - freestream (so-called from scratch),
 - pre-stall (from solution at $\alpha = 16^{\circ}$),
 - ramping angle (from solution at $\alpha = \alpha 1^{\circ}$).

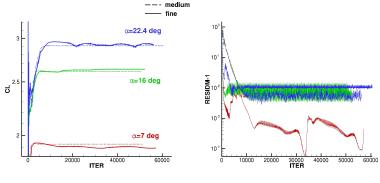
Introduction	Description of the configuration
Results	NSMB CFD solver and parameters
Conclusion	Dataset

Simulations performed

Turbulence	Grid	Angle of	Initial	Time
model	Size	attack [°]	Condition	Resolution
	uiromont .	Grid Convorgonoo Study (and 1 of Hill ift DW 1	<u>۸</u>
HILIIIPW requ	irrement :	Grid Convergence Study (case I of HILIIIPW-2)
SA	C, M, F	7, 16 and 22.4	freestream	steady
SA-Edwards	C, M, F	7, 16 and 22.4	freestream	steady
SA-salsa	C, M, F	7, 16 and 22.4	freestream	steady
Extended simulations, part 1 : Initial condition issues on stall prediction				
SA-Edwards	М	20 to 24 in steps of 1	freestream	steady
SA-Edwards	М	18.5 to 24 in steps of 0.5	from $\alpha = 16^{\circ}$	steady
SA-Edwards	М	17 to 26 in steps of 1	from $\alpha = \alpha - 1^{\circ}$	steady
Extended simulations, part 2 : Unsteady Simulations				
SA-Edwards	М	7,16 and 22.4	from steady state	unsteady

Grid convergence study Case 1 of the HiLiftPW-2

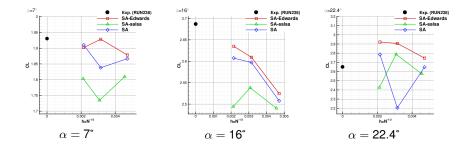
Purposes :


- Test of NSMB
- Test of the influence of the grid size
- Test of the influence of the turbulence models

Parameters :

- Steady solver, freestream IC
- 3 turbulence models : SA, SA-Edouards, SA-salsa
- 3 grid sizes : coarse, medium and fine

Histories of force and convergence



(SA-Edouards)

- \Rightarrow Oscillation of the forces, weak convergence
- \Rightarrow Less oscillation on fine grid than on coarse/medium grids

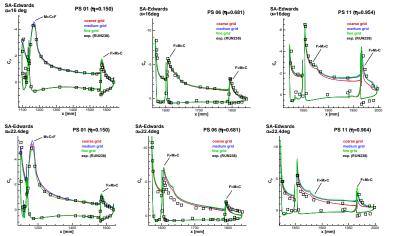

Grid convergence of the lift :

 \Rightarrow No overall grid convergence for the three angles-of-attack

Forces :

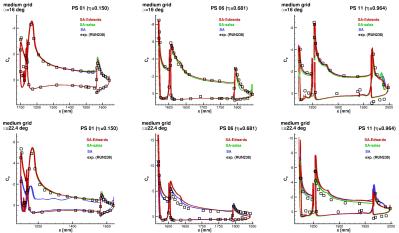
 \Rightarrow Large dispersion of the results at high angles-of-attack \Rightarrow Under-estimation of the lift

Introduction	Grid Convergence Study (case 1 of HiLiftPW-2)
Results	Stall study
Conclusion	Time-resolution effect


Pitching Moment :

\Rightarrow Dispersion of the results at all angles-of-attack

Pressure Distribution : Effect of the grid size ($\alpha = 16^{\circ}$; 22.4°)


 \Rightarrow Coarse grid results off the results of fine/medium grids \Rightarrow Good agreement with the experiment

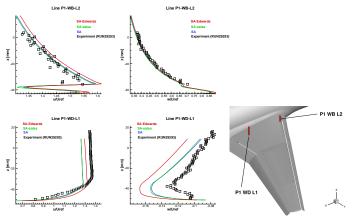
POLYTECHNIQUE MONTRÉAL

SciTech 2014, January 13-17, National Harbor, MD

AIAA 2014-0913: NSMB in HiLiftPW-2

Pressure Distribution : Effect of the turbulence model

⇒ Low effect of the SA-models, excepted for SA α = 22.4° (root flow separation predicted)



15/35

SciTech 2014, January 13-17, National Harbor, MD AIAA 2014-0913: NSMB in HiLiftPW-2

Introduction	Grid Convergence Study (case 1 of HiLiftPW-2)
Results	Stall study
Conclusion	Time-resolution effect

Velocity Profiles :

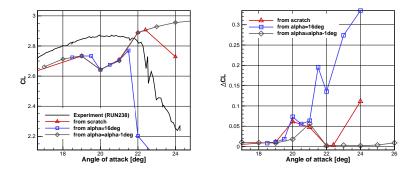
N.B. : the experimental results are at low Reynolds Number

SciTech 2014, January 13-17, National Harbor, MD AIAA 2014-0913: NSMB in HiLiftPW-2

POLYTECHNIQUE MONTRÉAL

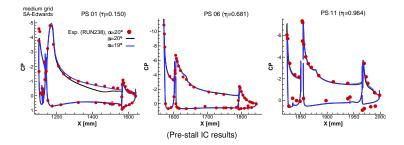
Stall study

Purposes :

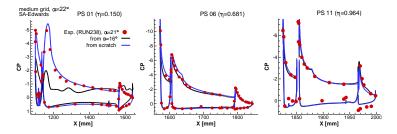

- Fine angle-of-attack definition at the stall range
- Description of the flow behavior until the stall
- Test of initial conditions

Parameters :

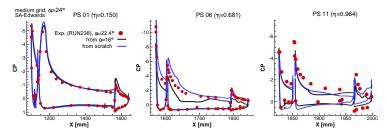
- Steady solver, SA-Edouards, medium grid
- 3 IC : freestream, pre-stall and ramping


Lift : Influence of the initial condition

- \Rightarrow Small lift decrease at stall without influence of the IC
- \Rightarrow Strong influence of the IC at the post-stall with lift drop

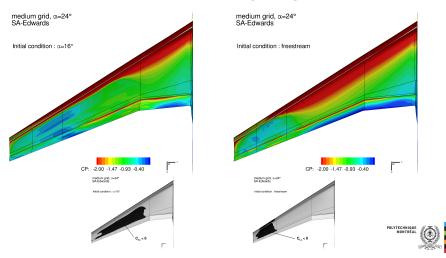

Pressure Distribution : Origin of the first lift decrease, Comparison between $\alpha = 19^{\circ}$ and 20°

 \Rightarrow Lift decrease at $\alpha =$ 20° is caused by low pressure at the root section


Pressure Distribution : Post-stall simulations, Influence of the initial condition at $\alpha = 22^{\circ}$

 \Rightarrow pressure drop at the root section (separated flow) for pre-stall IC

Pressure Distribution : Post-stall simulations, Influence of the initial condition at $\alpha = 24^{\circ}$



 \Rightarrow Pressure lost at the tip section (separated flow) for all IC \Rightarrow Separated flow larger with freestream IC than with pre-stall IC

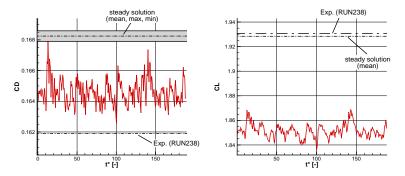
22/35

Separated flow at $\alpha = 24^{\circ}$: Pressure distribution (rescaled, $C_P \in [-2:0]$)

SciTech 2014, January 13-17, National Harbor, MD AIAA 2014-0913: NSMB in HiLiftPW-2

Time-resolution effect

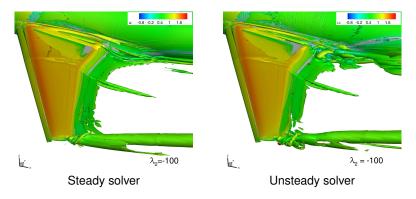
Purposes :


- Determination of the accuracy add of time-resolution
- Unsteady flow description
- Localization of the unsteadiness

Parameters :

- Unsteady solver, SA-Edouards, medium grid
- Angle-of-attack : $\alpha = 7, 16$ and 22.4°
- IC : from steady solution at the same angle-of-attack

At $\alpha = 7^{\circ}$, force histories :


 \Rightarrow larger oscillations than steady simulation

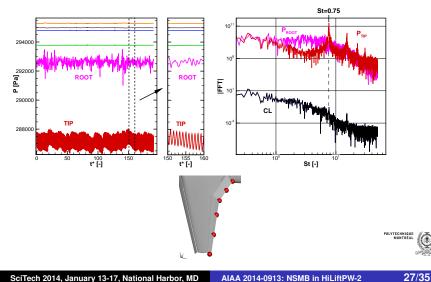
 \Rightarrow decrease of drag and of lift compared to the steady solution

25/35

At $\alpha = 7^{\circ}$, flow visualization : steady vs. unsteady

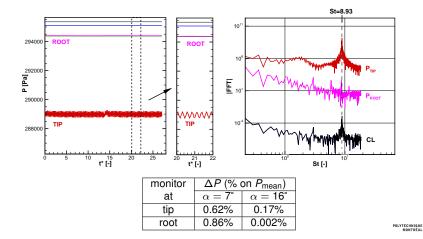
 \Rightarrow Analogous global flow

 \Rightarrow Small differences at the root vortex and at the wing wake close to the tip


At $\alpha = 7^{\circ}$, flow visualization : time animation

POLYTECHNIQUE MONTRÉAL

26/35


Isovalue of criteria λ_2 =-2000, colored by U-velocity

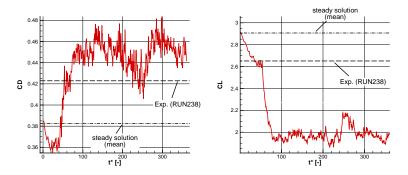
At $\alpha = 7^{\circ}$, unsteadiness of the flow :

Introduction	Grid Convergence Study (case 1 of HiLiftPW-2)
Results	Stall study
Conclusion	Time-resolution effect

At $\alpha = 16^{\circ}$, unsteadiness of the flow :

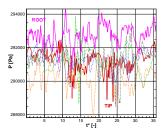
SciTech 2014, January 13-17, National Harbor, MD AIAA 2014-0913: NSMB in HiLiftPW-2

At $\alpha = 16^{\circ}$, flow visualization : time animation


29/35

 \Rightarrow Less unsteadiness than at $\alpha = 7^{\circ}$, but higher frequency

SciTech 2014, January 13-17, National Harbor, MD AIAA 2014-0913: NSMB in HiLiftPW-2


30/35

At $\alpha = 22.4^{\circ}$, force histories :

 \Rightarrow Drop of the lift (large flow separation) \Rightarrow Break in the lift history close the experimental value, before the drop

At $\alpha = 22.4^{\circ}$: separated flow visualization

Monitor point histories

Flow visualization

 \Rightarrow Large flow separation

POLYTECHNIQUE MONTRÉAL

Conclusion

- Low influence of the different SA models before stall
- High influence of the CI at post-stall
- Pre-stall CI not more stable than freestream CI against early detached flow prediction
- No grid convergence
- Loss of lift close to the maximum lift (turbulence model lack)
- Unsteady flow for all angles-of-attack
- Unsteadiness more pronounced for $\alpha = 7^{\circ}$ than 16°
- Complex flows with different time/space scales
- Importance of the root vortex

Outlook :

- Comparison for unsteady simulation with time-average values
- Simulation with lower timestep for high angle-of-attack
- Simulation of the configuration with brackets, case 3 (need structured mesh)
- Simulation of the case 1 with overset grid and flap motion

Acknowledgements :

- Jan Vos (CFS Eng., Switzerland) and Yannick Hoarau (Icube, France)
- Bombardier Aerospace
- CRIAQ
- NSERC CRSNG
- Compute Canada

CRIAQ/NSERC/Bombardier MDO-508 INTL

Thank you for your attention

thibaut.deloze@polymtl.ca eric.laudendeau@polymtl.ca

