

5th High Lift Prediction Workshop

August 2-3, 2024

High-Order TFG

Marshall Galbraith Massachusetts Institute of Technology galbramc@mit.edu

Steve Karman Oak Ridge National Laboratories Special thanks to:

- High-Order TFG Participants
 Meshing: Vangelis Skaperdas, Xevi Roca and Eloi Ruiz
 Solver: Kevin Holst, and ZJ Wang
- HLPW5 Leadership team and TFG Ideas

Key Questions for High-Order TFG

- Can high-order meshes be generated for a high-lift configuration?
 - What are the meshing requirements?
 - Does high-order mean less mesh sensitivity?
- - WMLES in 3D

Outline

- Terminology
 - What is a curved mesh?
- An academic example: Optimal adapted mesh distributions
- Multi-Element Airfoil: High-Lift 4 Verification
- Challenges Curving Meshes in 3D
- Submitted Solutions to High-Order TFG
- Summary

Terminology

- Finite Elements: Elemental polynomial mesh and solution

 Order of accuracy by the polynomial degree
- Mesh order
 - \circ Q1 (linear, e.g. standard mesh)
 - Q2 (quadratic)
 - \circ Q3 (cubic)
 - \circ Q4 (quartic)
- Solution order
 - \circ P1 is 2nd order solution \circ P2 is 3rd order solution \circ P3 is 4th order solution

Linear vs. Curved Meshes

- Linear mesh: linear (Q1) approximation to curved geometry
- **Curved mesh**: features explicit curvature (high-order polynomial element representation)
 - Mesh elevation: $Q1 \rightarrow Q2 \rightarrow Q3$

Straight-edged mesh
 Beneficial in applications sensitive to curvature:

- Fluid dynamics
- Mechanics
- Electromagnetics
- ...

High-Order Output Based Mesh Adaptation

- Error estimates via Dual Weighted Residual (Adjoint) method
- Mesh Optimization:
 - Find mesh that minimizes output error for a target Degree of Freedom (DOF) count
- MOESS: Provably optimal meshes (Hugh Carson, PhD Dissertation, MIT 2020)

• Mimics trailing edge pressure singularity:

$$u(r,\theta) = r^{\alpha} \sin(\alpha(\theta+\theta_0)), \ \alpha = \frac{2}{3}, \ \theta_0 = \frac{\pi}{2}$$

• L^2 projection and interpolation error:

$$u_{h,p} = \underset{v_{h,p}}{\arg\min} \|u - v_{h,p}\|_{L^{2}(\Omega)}^{2}$$
$$\mathcal{E} = \sqrt{\int_{\Omega} (u - u_{h,p})^{2} dx}$$

• Analytic spacing distribution:

$$h = C_r r^{k_a}, \quad k_a = 1 - \frac{\alpha + 1}{p + 2}$$

• Optimal distribution changes with *p*

• Mimics trailing edge pressure singularity:

$$u(r,\theta) = r^{\alpha} \sin(\alpha(\theta+\theta_0)), \ \alpha = \frac{2}{3}, \ \theta_0 = \frac{\pi}{2}$$

• L^2 projection and interpolation error:

$$u_{h,p} = \underset{v_{h,p}}{\operatorname{arg\,min}} \|u - v_{h,p}\|_{L^{2}(\Omega)}^{2}$$
$$\mathcal{E} = \sqrt{\int_{\Omega} (u - u_{h,p})^{2} dx}$$

• Analytic spacing distribution:

$$h = C_r r^{k_a}, \quad k_a = 1 - \frac{\alpha + 1}{p + 2}$$

• Optimal distribution changes with *p*

6 AIAA

• Mimics trailing edge pressure singularity:

$$u(r,\theta) = r^{\alpha} \sin(\alpha(\theta+\theta_0)), \ \alpha = \frac{2}{3}, \ \theta_0 = \frac{\pi}{2}$$

• L^2 projection and interpolation error:

$$u_{h,p} = \operatorname*{arg\,min}_{v_{h,p}} \|u - v_{h,p}\|^2_{L^2(\Omega)}$$
 $\mathcal{E} = \sqrt{\int_{\Omega} (u - u_{h,p})^2 dx}$

• Analytic spacing distribution:

$$h = C_r r^{k_a}, \quad k_a = 1 - \frac{\alpha + 1}{p + 2}$$

• Optimal distribution changes with *p*

GAIAA

• Mimics trailing edge pressure singularity:

$$u(r,\theta) = r^{\alpha} \sin(\alpha(\theta+\theta_0)), \ \alpha = \frac{2}{3}, \ \theta_0 = \frac{\pi}{2}$$

• L^2 projection and interpolation error:

$$u_{h,p} = \operatorname*{arg\,min}_{v_{h,p}} \|u - v_{h,p}\|^2_{L^2(\Omega)}$$
 $\mathcal{E} = \sqrt{\int_{\Omega} (u - u_{h,p})^2 dx}$

• Analytic spacing distribution:

$$h = C_r r^{k_a}, \quad k_a = 1 - \frac{\alpha + 1}{p + 2}$$

• Optimal distribution changes with *p*

GAIAA

MOESS 'discovers' analytic spacing distribution

• Mimics trailing edge pressure singularity:

$$u(r,\theta) = r^{\alpha} \sin(\alpha(\theta+\theta_0)), \ \alpha = \frac{2}{3}, \ \theta_0 = \frac{\pi}{2}$$

• L^2 projection and interpolation error:

$$u_{h,p} = \operatorname*{arg\,min}_{v_{h,p}} \|u - v_{h,p}\|^2_{L^2(\Omega)}$$
 $\mathcal{E} = \sqrt{\int_{\Omega} (u - u_{h,p})^2 dx}$

• Analytic spacing distribution:

$$h = C_r r^{k_a}, \quad k_a = 1 - \frac{\alpha + 1}{p + 2}$$

• Optimal distribution changes with *p*

6 A A A

MOESS recovers order of accuracy $O(h^{p+1})$

• Mimics trailing edge pressure singularity:

$$u(r,\theta) = r^{\alpha} \sin(\alpha(\theta+\theta_0)), \ \alpha = \frac{2}{3}, \ \theta_0 = \frac{\pi}{2}$$

• L^2 projection and interpolation error:

$$u_{h,p} = \underset{v_{h,p}}{\operatorname{arg\,min}} \|u - v_{h,p}\|_{L^{2}(\Omega)}^{2}$$
$$\mathcal{E} = \sqrt{\int_{\Omega} (u - u_{h,p})^{2} dx}$$

• Analytic spacing distribution:

$$h = C_r r^{k_a}, \quad k_a = 1 - \frac{\alpha + 1}{p + 2}$$

• Optimal distribution changes with *p*

• Mimics trailing edge pressure singularity:

$$\mu(r,\theta) = r^{\alpha} \sin(\alpha(\theta+\theta_0)), \ \alpha = \frac{2}{3}, \ \theta_0 = \frac{\pi}{2}$$

• L^2 projection and interpolation error:

$$u_{h,p} = \underset{v_{h,p}}{\operatorname{arg\,min}} \|u - v_{h,p}\|_{L^{2}(\Omega)}^{2}$$
$$\mathcal{E} = \sqrt{\int_{\Omega} (u - u_{h,p})^{2} dx}$$

• Analytic spacing distribution:

$$h = C_r r^{k_a}, \quad k_a = 1 - \frac{\alpha + 1}{p + 2}$$

Uniform meshes converge at $O(h^{\frac{5}{3}})$ for all p

Fixed mesh P-convergence only works for smooth functions

• Optimal distribution changes with p

Multi-Element High-Lift Airfoil High-Lift 4 Verification Case

- Adaptation obtains optimal convergence rates
 - Uncovers potential of high-order methods

August 2-3, 2024

$\alpha = 8^{\circ}$ Q3 Meshes at 10^{-4} c_l Error Level

August 2-3, 2024

5th AIAA High Lift Prediction Workshop

15

SHAPING THE FUTURE OF AEROSPACE

High-Lift 4 Results

- P1 \rightarrow P2: Reduced error on expert crafted meshes
- Expert and adapted meshes converge to different solutions?!
 - Expert mesh increases resolution where it does not improve lift
- Community lack of experience for manual curved mesh generation

Multi-Element High-Lift Airfoil Expert Meshes Cont. **Discretization: FV and FEM P1**

ର୍ଗ**AIAA**

August 2-3, 2024

Expert and Adapted with Comparable Drag Error

High-Order TFG Participation

• 5-10 participants meeting every two weeks

• 3 groups generating curved meshes

- $_{\odot}$ ANSA: WMLES and RANS Q2
- $_{\odot}$ Oak Ridge National Laborites, Pointwise: RANS Q2
- Barcelona Super Computing Center (BSC): WMLES Q2-Q4

2 codes/groups submitted solutions

- $_{\odot}$ COFFE: University of Tennessee
- hpMusic: University of Kansas

Challenges: 3D mesh curving for high-order methods

- Human labor: time to prepare a meshable model (everyone's problem)
- Efficiency: linear mesh resolution limited by time & memory
- **Robustness**: geometric tangents & boundary layers lead to invalid curving
- Flexibility: handling complex geometries with wide range of length scales
- Guarantees: ensure extrema mesh quality and geometric accuracy

Challenges: Geometric Tangencies (Pinch Points)

Unavoidable curve / surface tangencies hampers:

- Convergence of curving solver: More linear solver iterations & non-linear back-trackings
- Mesh quality: May lead to low-quality elements

Tangency on a bracket

Tangency on the vertical stabilizer

BSC Promises: 3D mesh curving for high-order methods

- Human labor: reduce preparation time using virtual geometry
- Efficiency: finer resolutions using a distributed curving solver
- **Robustness:** always an answer by ensuring intermediate validity
- Flexibility: handling complexity using curving for virtual geometry
- Guarantees: high-fidelity by optimizing quality & accuracy
 [Ruiz-Gironés, Roca AIAA'22; CAD'22]
- Value: enabling high-fidelity aerodynamic simulations for unsteady implicit WMLES solvers

[Wang AIAA'24]

Cases 2.2 & 2.4: Geometry Definition

- Case 2.2:
- Horizontal / vertical stabilizers
- Slats

Case 2.4:

- Horizontal / vertical stabilizers
- Slats
- Flaps
- Nacelle

BSC Curved Mesh: Case 2.2

- Mesh analysis: Isotropic, Q2, 2.8M elements, 4.2M nodes
 - Computational resources: 30 minutes with 768 processors

BSC Curved Mesh: Case 2.4

- Mesh analysis: Isotropic, Q2, 3.6M elements, 5.4M nodes
 - Computational resources: 60 minutes with 768 processors

Submitted High-Order Solutions

SUPG Finite Element Discretization

 \circ RANS P2 (3rd-order)

Compressible meanflow & SA-neg-QCR2000-R (Crot=1) equations

○ Iso-parametric: P2Q2

 \circ Machine zero residuals

• Flux Reconstruction/CPR Discretization

- WMLES: Equilibrium wall-model
- Vreman SGS model
- ANSA/BSC Q2 isotropic tetrahedral mesh

Case 1 RANS Solutions: CL and CD

Case 1: WMLES CL and CD

- High-Order solution "in the middle of the pack"
- Grid convergence not observed by any WMLES solution

Case 2.4 BSC Q2 meshes: WMLES CL and CD

Summary

RANS

- High-order methods are silver bullet for meshing
 - The optimal Q1 mesh for P1 is not optimal Q2 mesh for P2
 - Fewer elements \rightarrow distribution is more important
- High-order methods are effective in 2D with adaptation
 - Fixed meshes corrected based on interrogation of adapted meshes
- We need more information on "optimal" meshes in 3D
 - Adaptation can help inform
 - Curved adapted meshes is a research topic

WMLES

- High-order is promising
- Mesh convergence and mesh "optimality" not well understood

Acknowledgements

- All the volunteers contributing meshes, solutions, and valuable discussions
- The workshop organization committee and TGF leads

Steve Karman

• Spearheaded High-Order TFG and curved mesh generation

"You cannot solve what you don't resolve!" -- Steve Karman