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Key Questions

• HLPW-5 Key Questions

o Test Case 1: Can consistency of integrated CFD forces/moments be achieved for simple high-lift 

configurations?

o Test Case 2: Does consistency of CFD forces/moments change in configuration buildup?

o Test Case 3: Does consistency of CFD forces/moments change with variation of Reynolds number?

o Are there unique CFD modeling requirements (e.g., mesh, solver, etc.)?

• Fixed-Grid RANS TFG Key Questions

o Can grid-converged solution be achieved with practical RANS solvers for high-lift configurations?

o Can different solvers using the same RANS model agree on grid-converged solution?

o What are requirements for different RANS solvers to agree on grid-converged solutions?

o What insight RANS solutions can provide for experiments and turbulence models?
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Outline

• Statistics of  Fixed-Grid RANS Solutions 

• Test Case 1: Verification 

• Test Case 2 : Configuration buildup

• Test case 3 : Reynolds Number Effects

• Conclusion: Responses to Key Questions
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Fixed-Grid RANS TFG Statistics 

• 96 E-mail Addresses on Fixed-Grid RANS TFG Distribution List

• 26 Teams Submitted RANS Solutions on Fixed-Grid Families 

o 23 R- teams and H-005, L-004, and L-005 teams 

o R- teams/codes listed at https://hiliftpw.larc.nasa.gov/Workshop5/TFG_rans.html

o 10 countries

o Government labs, major aerospace companies, academic institutions, commercial 

software developers, and small businesses

o 224 independent sets of fixed-grid solutions
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Fixed-Grid RANS Solutions

• Discretization Approaches

o Node-centered, finite-volume, 2nd order     :   6 solvers,   69 sets

o Cell-centered, finite-volume, 2nd order     : 16 solvers, 141 sets

o Node-centered, continuous finite-element      :   2 solvers,   14 sets

• RANS Models
o Spalart-Allmaras (SA) equations, including SA-neg and SA-noft2 variants : 22 solvers, 150 sets

o SA-R(Crot=1)-QCR2000 equations      : 13 solvers,   32 sets

o Other models        :   9 solvers,   42 sets

• Fixed-Grid Families
o POINTWISE, mixed-element (1.R.01, 1.R.09, 2.R.03, 3.R.01 )  : 18 solvers, 83 sets

o HELDENMESH, mixed-element (1.R.03, 1.R.05, 1.R.07, 2.R.01, 3.R.02) : 11 solvers, 76 sets

o ANSYS ICEM CFD, hex-dominant (1.R.04, 1.L.01, 1.H.04, 2.L.01)  : 10 solvers, 31 sets

o STAR-CCM+, mixed-element (2.R.04)     :   2 solvers,   9 sets

o Custom grids        :   6 solvers, 18 sets

• RANS solutions on adapted grids are shown for reference
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Solution Assessment Criteria

• Iterative Convergence Criteria 

o Machine-zero meanflow and turbulence-model residuals for steady-state solutions 

are desirable

✓Rarely achieved for complex geometries (2.2-2.4, 3.1-3.4) and high angles of attack

o Relaxed criteria of 1% variation in established convergence pattern of forces and 

pitching moment (F&M) over last 20% of iterations

✓ Illustrated later on Case 1 example

• Grid Convergence

o Solutions on three or more grids in family, including fine enough grids

o Smaller variation between solutions on finer grids

o Aerodynamic coefficients are plotted versus characteristic mesh size h = N − Τ1 3

✓N is degrees of freedom: nodes for node-centered and cells for cell-centered solutions
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Test Case 1
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Flow Conditions: M∞ = 0.2, ReMAC = 5.6⤬106, Tref = 521  °R, ⍺ = 11° 

CRM-HL-WB

Verification Case



F&M Grid Convergence, All RANS Solutions
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Grid-size reference:
N =        1,000,000 N(-1/3) ~ 0.01

N =        5,000,000 N(-1/3) ~ 0.006

N =      10,000,000 N(-1/3) ~ 0.005

N =    100,000,000 N(-1/3) ~ 0.002

N =    300,000,000 N(-1/3) ~ 0.0015

N =    500,000,000 N(-1/3) ~ 0.0013

N = 1,000,000,000 N(-1/3) ~ 0.001

Blue = SA
Red = SA-R(crot=1)-QCR2000
Green = other

Global view:
• With exception of outliers, relatively 

tight grouping of aerodynamic 

coefficients in grid refinement

• Hard to discern more details



Selection process:
1. Solutions computed with the same RANS model 

2. Solutions converged iteratively on nominal grids

3. Solutions demonstrated grid convergence 
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CL:   2% range [1.065, 1.086] (shaded)

CD:   6% range [0.063, 0.067] (40 counts, shaded)

CM: 20% range [-0.070, -0.058] (shaded)

Blue = SA
Red = SA-R(crot=1)-QCR2000
Green = other

• Only two models have multiple submissions

• Selection is needed to assess agreement between 

solutions in grid refinement

F&M Grid Convergence (Zoomed), All RANS Solutions



Red = fixed grids 

Blue = adapted grids
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Iterative Convergence, All RANS Solutions

• With exception of outliers, solutions satisfy iterative convergence criteria

• Most solutions converged to steady state

• Many solutions converged residuals to low levels comparable with machine zero

Iterative convergence criteria: 1% variation in established convergence pattern of 

lift and pitching moment over last 20% of iterations

• Steady-state solution: mean varies by less than 1% and standard deviation is less than 1% 

• Established oscillatory solution: mean and standard deviation vary by less than 1%



F&M Grid Convergence, SA Solutions
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CL: 0.9% range [1.075, 1.085] (shaded)

CD:    4% range [0.0635, 0.0660] (25 counts, shaded)

CM:    9% range [-0.070, -0.064] (shaded)

                                                         

• Grid-convergence trend, i.e., smaller solution variation on finer grids

• F&M ranges for SA solutions reduced by more than factor 2 for CL and CM; by 15 counts for CD

CL:    2% range [1.065, 1.086] 

CD:   6% range [0.063, 0.067] (40 counts)

CM: 20% range [-0.070, -0.058]

All RANS solutions (shown for reference) SA solutions



• Solutions not satisfying iterative convergence 

criteria and solutions on 1.R.01 grids removed

• Grid-convergence plots colored by grid family
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Selected SA Solutions
Grid-converged solution established with high confidence

CL: 0.9% range [1.075, 1.085] 

CD:    4% range [0.0635, 0.0660] (25 counts)

CM:    9% range [-0.070, -0.064]

All SA solutions (shown for reference)

CL: 0.45% range [1.075, 1.080] 

CD:  0.8% range [0.0635, 0.0640], (5 counts)

CM:  4.5% range [-0.068, -0.065]

Selected SA solutions

• Ranges of CL and CM reduced by factor 2

• Range of CD reduced by 20 counts

• Residuals are well converged 
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Selected SA-R(crot=1)-QCR2000 Solutions

CL: 0.4% range [1.067, 1.071] 

CD:    1% range [0.0630, 0.0636], (6 counts) 

CM:    5% range [-0.061, -0.058]

• Ranges for CL and CM in SA and SA-R(crot=1)-QCR2000 solutions do not overlap

• Distinctly different grid-converged solutions for each model 

• Grid-convergence plots colored by grid family

CL: 2.3% range [1.066, 1.081] 

CD:  10% range [0.0630, 0.0694] (64 counts)

CM:  12% range [-0.063, -0.056]

All SA-R(crot=1)-QCR2000 solutions Selected SA-R(crot=1)-QCR2000 solutions

Grid-converged solution established with high confidence



Distinctly different streamlines in SA and SA-R(crot=1)-QCR2000 solutions

SP1.1 View: Outboard Wing Trailing-Edge Streamlines
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Looking outboard at glancing angle, fuselage turned off 
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R-002.3
1.R.05.F

R-003.1
1.R.07.UFine

R-011.4
1.R.04.15v

R-013.4
1.R.05.F

R-015.3
1.R.05.F

R-022.1
1.L.01.E

• Similar streamlines in selected SA solutions

Streamlines in Selected SA Solutions 



16• Similar skin-friction patterns in selected SA solutions

Skin-Friction Contours in Selected SA Solutions 

A-003.2
Adapt.

R-015.3
1.R.05.F

R-003.1
1.R.07.UFine

R-011.4
1.R.04.15v

R-002.3
1.R.05.F

R-022.1
1.L.01.E



Surface Pressure, All RANS Solutions 
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Row A

57 RANS solutions

7 outliers removed

Row I

53 RANS solutions

11 outliers removed

zoom

zoom
• Good agreement in surface 

pressure among most 

solutions at inboard sections

• Some deterioration for 

outboard sections 

Red = fixed grids 

Blue = adapted grids



Surface Pressure Suction Peak, Selected Solutions 

Row I: RANS solutions 

(shown for reference)

Row I: selected solutions

SA

Row I: selected solutions 

SA-R(crot=1)-QCR2000

• Excellent agreement between surface pressures in selected solutions at all 
sections, including suction peak and trailing edge (not shown)

Zoomed suction-peak view

Red = fixed grids 

Blue = adapted grids
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Case 1
Miscellaneous Observations
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Eddy-viscosity profiles
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Submissions from:
R-009.1-2
R-015.1-4
R-017.5
R-020.1-2
A-006

• Few eddy-viscosity profiles
o SA solutions agree well 

o SA-R(crot=1)-QCR2000 

solutions show more variation

Location A.1

Location A.2

Location A.3 Location A.4 Location A.5

Blue = SA

Red = SA-R(crot=1)-QCR2000
Green = other
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Velocity Profiles

RANS
Submissions from:
R-009.1-2
R-015.1-4
R-016.1-2
R-017.5
R-019
R-020.1-2
R-022.1-2
A-006
(also L-004.1,2,8)

Location B.2 Location B.3

Location C.1 Location C.2 Location C.3

• Few velocity profiles

• Except for several outliers, RANS 

solutions agree at locations A 

(not shown) and B 

• Agreement gets worse at 

locations C and D (not shown)

Red = fixed grids 

Blue = adapted grids



Test Case 1: Summary

• RANS solvers agree on grid-converged solutions if

o Solutions computed with the same RANS model

✓ Importance of well-posed RANS models (PDE solution exists, is unique, and continuously depends on input 

parameters)

o Grid families place sufficient degrees of freedom in critically important areas 

✓ Importance of mesh-generation and aerodynamics experts in loop

o Iterative convergence is sufficient

✓ Importance of strong nonlinear iterative solvers

• Case 1 grid-converged solutions established with high confidence for SA 

and SA-R(crot=1)-QCR2000 models

o Different solvers computing on different grid families with the same RANS model converge 

aerodynamic coefficients within narrow ranges

o Grid-converged solutions distinguish between different RANS models, in aerodynamic 

coefficients and separation patterns

o Can be used for validation 
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Test Case 2
Configuration Build-Up
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Case 2.1
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Flow Conditions: M∞ = 0.2, ReMAC = 5.4⤬106, Tref = 518.67 °R,

 ⍺ = 6°,10°, 12°, 13°, 14°, 15°, 16°

CRM-HL-WBHV



F&M Polars on Nominal Grids, All RANS Solutions

Global view:
• With exception of outliers, relatively good F&M agreement for ⍺ ≤ 12°

• Larger discrepancy at high angles of attack

• Some agreement for after-stall conditions, ⍺ = 16°; more studies needed
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Blue = SA
Red = SA-R(crot=1)-QCR2000
Green = other

alpha, deg alpha, deg alpha, deg



F&M Polars on Nominal Grids

SA Solutions Iteratively Converged at ⍺ = 14°

Global view:
• Relatively good CL agreement up to ⍺ = 14°

• With single exception, relatively good CD agreement up to ⍺ = 14°
o at ⍺ =   6°, CD range is [0.0371, 0.0390], 19 counts

o at ⍺ = 14°, CD range is [0.1055, 0.1108], 53 counts

• Reasonable CM agreement for low angles of attack
o Larger discrepancy at high angles of attack 26

alpha, deg alpha, deg alpha, deg

Red=2.R.01
Blue=2.R.03
Green=Other
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F&M Grid Convergence, All RANS Solutions, ⍺ = 10° and ⍺ = 12° 

• With exception of outliers, F&M grid-convergence trend starts from coarse grids

α=12⁰ 

α=10⁰ α=10⁰ α=10⁰ 

α=12⁰ α=12⁰ 

Blue = SA

Red = SA-R(crot=1)-QCR2000
Green = other



α=14⁰ 

28
• Solutions at ⍺ = 14° require finer grids to show grid convergence

• Solutions at ⍺ = 15° do not show grid convergence

F&M Grid Convergence, All RANS Solutions, ⍺ = 14° and ⍺ = 15° 

Blue = SA

Red = SA-R(crot=1)-QCR2000
Green = other

α=14⁰ α=14⁰ 

α=15⁰ α=15⁰ α=15⁰ 



Selected SA Solutions, ⍺ = 12°
CL: 1.7% range [1.195, 1.215] (shaded)

CD: 2.1% range [0.0837, 0.0855] (18 counts, shaded)

CM: 5.4% range [-0.302, -0.286] (shaded)

• Many solutions converge to steady state 
o Deep residual convergence shown by 5 solutions on nominal grids

o Dash-line solutions have not converged sufficiently

• F&M variation ranges wider than in Case 1

• F&M agreement improves on finer grids
o 0.25% CL range, 18 counts CD range, and 0.66% CM range  on 

grid with 400M degrees of freedom
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Red=2.R.01

Blue=2.R.03

Green=Other
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R-003
2.R.01.G

R-006
2.R.04.F

R-005.2
2.R.01.F

• Similar mostly attached streamlines in selected solutions

Streamlines in Selected SA Solutions, ⍺ = 12°  

R-015.3
2.R.01.F

R-013
2.R.01.R

R-008.1
2.R.03.C



Row I: all 

RANS solutions

Row I: selected 

SA solutions

Row I: all 

RANS solutions

Surface Pressure, ⍺ = 12°

• Good agreement between surface pressure in selected SA solutions at all sections

Zoomed suction-peak viewGlobal view
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Row A: all 

RANS solutions

Row A: all 

RANS solutions

Row A: selected 

SA solutions

Blue = SA

Red = SA-R(crot=1)-QCR2000

Green = other



Selected SA Solutions ⍺ = 14°
CL: 1.8% range [1.320, 1.344] (shaded)

CD:    6% range [0.105, 0.111] (60 counts, shaded)

CM: 7.6% range [-0.325, -0.301] (shaded)
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• F&M variation ranges wider than for ⍺ = 12°

• Fewer solutions iteratively converged
o 3 solutions reported deep residual convergence on nominal grids

o 7 iteratively-converged solutions computed on 3 or more grids 

• F&M agreement improves on finer grids
o 0.37% CL range, 13 counts CD range, and 3.1% CM range on 

grids with 170M+ degrees of freedom

Red=2.R.01
Blue=2.R.03
Green=Other



33• Small differences in separation extent at trailing edge and wing tip

Streamlines in Selected SA Solutions, ⍺ = 14°  

R-005.2
2.R.01.F

R-013
2.R.01.R

R-008.4
2.R.01.R

R-003
2.R.01.G

R-005.1
2.R.01.F

R-001.1
2.R.01.G



34• Similar skin-friction contours in selected SA solutions

Skin-friction Contours in Selected SA Solutions, ⍺ = 14°  

R-005.2
2.R.01.F

R-013
2.R.01.R

R-008.4
2.R.01.G

R-005.1
2.R.01.F

R-003
2.R.01.G



Row I: all 

RANS solutions

Row I: selected 

SA solutions

Row I: all 

RANS solutions

Surface Pressure, ⍺ = 14°

• All-solution agreement deteriorates, especially outboard

• Only two Cp for selected SA solutions, agree well

Zoomed suction-peak viewGlobal view
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Row A: all 

RANS solutions

Row A: all 

RANS solutions

Row A: selected 

SA solutions

Blue = SA

Red = SA-R(crot=1)-QCR2000

Green = other



No Selected Solutions at ⍺ = 15°

36

Zoomed suction-peak viewGlobal view

Row I

Row A
• Few solutions

• Poor iterative convergence

• Grid convergence cannot be assessed

• Poor surface-pressure agreement at all sections

Row A

Row I

Blue = SA

Red = SA-R(crot=1)-QCR2000

Green = other



37• Surface streamlines for solutions that agreed at ⍺ = 12° and ⍺ = 14° do not agree at ⍺ = 15°

R-005.1
2.R.01.F

R-015.3
2.R.01.FR-001.1

2.R.01.G

Streamlines, ⍺ = 15°  

R-022.1
2.L.01.C

R-008.4
2.R.01.G

R-008.1
2.R.03.C



• Selected grid-converged SA solutions agree to each other for ⍺ ≤ 14°

• Good iterative convergence for selected SA solutions for ⍺ ≤ 14°
o Several solvers reported machine-zero residuals on nominal grids

o Many solutions converged to steady state

• Insufficient data at ⍺ = 15°
o Few solutions have data on grid convergence and iterative convergence

o Iterative convergence is worse than for lower angles of attack
✓ Deep residual convergence is elusive 

o No solutions selected 

o No agreement between solutions
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Test Case 2.1: Summary



Case 2.2
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Flow Conditions: M∞ = 0.2, ReMAC = 5.9⤬106, Tref = 518.67 °R,

 ⍺ = 6°,10°, 12°, 17.7°, 20°, 21.5°, 23°, 23.8°  

ONERA_LRM-WBSHV
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F&M Polars on Nominal Grids, All RANS Solutions

Global View:
• Reasonable agreement between F&M for low angles of attack

• Large discrepancy for medium to high angles of attack

• In comparison to ONERA experiment
o Reasonable agreement in F&M at low angles of attack
o At high angles of attack,  CL,max is lower, CD is higher, and CM is less negative than ONERA experiment
o Some solutions have good agreement in CL and CD at all angles of attack 

o No agreement in CM at high angles of attack

Blue = SA
Red = SA-R(crot=1)-QCR2000
Green = other

alpha, deg alpha, degalpha, deg



F&M Polars on Nominal Grids

SA Solutions Iteratively Converged at ⍺ = 23.8°

Global view:
• Green circles mark R-004 solutions that converge to steady state and show deep residual convergence for 

Case 2.2 at all angles of attack

• With two exceptions, CL variation is less than 10% up to ⍺ = 23°

• With a few exceptions, good agreement in CD; at ⍺ = 23°, CD range is [0.2637 , 0.2698], 61 counts

• With one exception, reasonable CM agreement up to ⍺ = 17.7°; larger discrepancy at high angles of attack
41

alpha, deg alpha, deg alpha, deg

Red=2.R.01
Blue=2.R.03
Green=Other



ONERA Experiment

10.01489 1.014623

ONERA Experiment

10.01489 0.0697572

ONERA Experiment

10.01489 -0.2604911

ONERA Experiment

17.69566 1.685868

ONERA Experiment

17.69566 0.1588577

ONERA Experiment

17.69566 -0.4923931
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F&M Grid Convergence, All RANS Solutions, ⍺ = 10° and ⍺ = 17.7° 

Blue = SA

Red = SA-R(crot=1)-QCR2000
Green = other

• At ⍺ = 10°, CL and CD converge to values higher than experiment, CM converges close to experiment

• At ⍺ = 17.7°, grid convergence is not clear;  subset of solutions appear converging near experiment

α=10⁰ α=10⁰ α=10⁰ 

α=17.7⁰ α=17.7⁰ α=17.7⁰ 



ONERA Experiment

21.49791 -0.6340495

ONERA Experiment

21.49791 1.9704109

ONERA Experiment

21.49791 0.2214046
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Blue = SA

Red = SA-R(crot=1)-QCR2000
Green = other

• At ⍺ = 21.5°, no grid convergence can be discerned

F&M Grid Convergence, All RANS Solutions, ⍺ = 21.5° 

α=21.5° α=21.5° α=21.5°



ONERA Experiment

10.01489 1.014623

ONERA Experiment

10.01489 0.0697572 ONERA Experiment

10.01489 -0.2604911

CL: 1.5% range [1.015, 1.030] 

CD: 7.8% range [0.0708, 0.0765], 57 counts 

CM: 5.4% range [-0.265, -0.251]
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Selected SA Solutions, ⍺ = 10°

• F&M variation ranges comparable to Case 2.1

• Several solutions converged to steady state 

• Few solutions on 100M+ grids

• F&M agreement improves on fine grids
o 0.34% CL range, 0.5 count CD range, and 1.6% CM range  on grids 

with 250M+ degrees of freedom

Red=2.R.01
Blue=2.R.03
Green=Other
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R-002.2
2.R.01.F

R-003
2.R.01.G

R-013
2.R.01.R

R-022.1
2.L.01.C A-003.1

Adapt.

A-003.3
Adapt.

Streamlines in Selected SA Solutions, ⍺ = 10°  

• Similar mostly attached streamlines in selected SA solutions
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R-022.1
2.L.01.C

A-003.1
Adapt.

A-003.3
Adapt.

Skin-Friction Contours in Selected SA Solutions, ⍺ = 10°  

• Similar skin-friction contours in selected solutions
• No significant outboard separation

R-013
2.R.01.R

R-002.2
2.R.01.F

R-003
2.R.01.G



CL: 4.8% range [1.63, 1.71] 

CD: 4.5% range [0.1615, 0.1690], 75 counts 

CM: 10% range [-0.502, -0.454]

ONERA Experiment

17.69566 1.685868

ONERA Experiment

17.69566 0.1588577

ONERA Experiment

17.69566 -0.4923931
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• F&M ranges increased compared to ⍺ = 10°

• Very few solutions converged to steady state 
o Most established solutions oscillate 

o R-013 appears as outlier; good agreement for other angles

• F&M agreement improves on fine grids 
o 2% CL range, 41 count CD range, and 2.6% CM range on grids with 

200M+ degrees of freedom

Selected SA Solutions, ⍺ = 17.7°

Red=2.R.01
Blue=2.R.03
Green=Other
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Skin-Friction Contours in Selected SA Solutions, ⍺ = 17.7°  

• Significant differences in skin-friction contours midspan and outboard
• “Pizza” disturbance appears outboard, at different slat brackets

A-002
Adapt.

R-010.2
EnnovaR-010.1

2.R.01.F

R-002.2
2.R.01.F

R-008.1
1.R.03.C

R-003
1.R.01.G



CL: 13% range [1.69, 1.925] 

CD: 30% range [0.229, 0.296], 670 counts 

CM: 18% range [-0.57, -0.475]

49

• 2 solutions appear converged to steady state 
o Most established solutions strongly oscillate 

• Insignificant improvements on fine grids
o No grid convergence observed

o Finer grids are needed

Selected SA Solutions, ⍺ = 21.5°

ONERA Experiment

21.49791 -0.6340495

ONERA Experiment

21.49791 1.9704109

Red=2.R.01
Blue=2.R.03
Green=Other

ONERA Experiment

21.49791 0.2214046
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R-002.2
2.R.01.F

R-013
2.R.01.R

R-022.1
2.L.01.C

R-010.1
2.R.01.F

Skin-friction Contours in Selected SA Solutions, ⍺ = 21.5°  

• Significant differences in skin-friction contours with “pizza” disturbances over entire wing
• R-003 and R-010.1 show relatively small “pizza” disturbances

R-008.1
2.R.03.C

R-003
2.R.01.G



Red=2.R.01
Blue=2.R.03
Green=Other

CL: 17% range [1.81, 2.15] 

CD: 23% range [0.285, 0.355], 70 counts 

CM: 13% range [-0.66, -0.58]

ONERA Experiment

23.78703 -0.7676271
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No F&M grid convergence, 

no solution agreement

No Solution Selected at ⍺ = 23.8°

ONERA Experiment

23.78703 0.2705507

ONERA Experiment

23.78703 2.0833504
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• Chaotic “pizza” disturbances over entire wing
• R-003 and R-010.1 show relatively small “pizza” disturbances

R-013
2.R.01.R

R-022.1
2.L.01.C

R-010.1
2.R.01.F

Skin-Friction Contours at ⍺ = 23.8°  

R-003
2.R.01.G

R-002.2
2.R.01.F

R-008.1
2.R.03.C
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α=17.7⁰ α=21.5⁰ α=23.8⁰ 

R-004 SA Solutions with Deep Residual Convergence 

• Custom STAR-CCM+ grids with enhanced orthogonality

• No “pizza” disturbances at high angles of attack



• Iterative convergence is more challenging than for Case 2.1
o Many solvers arrive at steady state at low angles of attack

✓ R-004 consistently reported deep residual convergence for all angles of attack and no “pizza” disturbances

o At high angles of attack, most established solutions are oscillatory
✓ In many solutions, “pizza” disturbances appear for ⍺ ≥ 17.7°, mostly outboard

✓ Initiated at different slat brackets 

• Grid convergence is challenging for high angles of attack
o Selected SA solutions show grid convergence and good agreement for ⍺ ≤ 10°

✓ F&M agreement improves on grids with 200M+ degrees of freedom

o Agreement between solutions deteriorates for high angles of attack
✓ Fewer selected solutions and insufficient data for solutions assessment

✓ No grid convergence and no solution agreement at ⍺ = 21.5°; no selected solutions at ⍺ = 23.8°

• Comparison with experiment
o Relatively good agreement at low angles of attack

o At high angles of attack
✓ CL tends to be lower than experiment

✓ CD tends to be higher than experiment

✓ CM tends to be less negative than experiment

✓ In some solutions, CL and CD are relatively close to experiment at all angles of attack

✓ No solution shows CM close to experiment 54

Test Case 2.2: Summary



Case 2.3

55

Flow Conditions: M∞ = 0.2, ReMAC = 5.9⤬106, Tref = 518.67 °R,

 ⍺ = 6°,10°, 12°, 14°, 16°, 17.7°, 20.7°, 23.5°  

ONERA_LRM-WBSFHV



F&M Polars on Nominal Grids, All RANS Solutions

Global view:
• Some agreement between solutions for low angles of attack

• No agreement for high angles of attack

56

alpha, deg alpha, deg alpha, deg

Blue = SA
Red = SA-R(crot=1)-QCR2000
Green = other



F&M Polars on Nominal Grids

Selected SA Solutions

Global view:
• Poor iterative and grid convergence, especially at higher angles of attack

• Selected solutions have no benefits over all solution

• Usefulness of selection diminishes when iterative and grid convergence are lacking
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alpha, deg alpha, deg alpha, deg

Red=2.R.01
Blue=2.R.03
Green=other fixed grids
Pink = adapted
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Skin-Friction Contours, ⍺ = 10°  

• Similar skin-friction patterns with separation outboard and on flaps 

R-002.2
2.R.01.F

R-006.2
STAR-CCM+

R-009
2.R.03.C

R-025
2.R.03.C

R-008.1
2.R.03.C

R-003
2.R.01.G
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R-002.2
2.R.01.F

Skin-Friction Contours, ⍺ = 17.7°  

R-006.2
STAR-CCM+

R-009
2.R.03.C

R-025
2.R.03.C

• Significantly different skin-friction patterns; outboard and flap separation 

R-003
2.R.01.G

R-004
STAR-CCM+
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R-002.2
2.R.01.F

Skin-Friction Contours, ⍺ = 23.5°  
R-003
2.R.01.G

R-006.2
STAR-CCM+

R-009
2.R.03.C

R-024
2.R.03.C

• Very different skin-friction patterns; large inboard separation

R-004
STAR-CCM+



• No benefits from selection

• Reasonable agreement between solutions at ⍺ = 10°

• Poor agreement at ⍺ = 17.7° and ⍺ = 23.5°
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Test Case 2.3: Summary



Case 2.4

62

Flow Conditions: M∞ = 0.2, ReMAC = 5.9⤬106, Tref = 518.67 °R,

 ⍺ = 7.6°,10°, 14°, 16°, 17.7°, 19.7°, 23.6°  

ONERA_LRM-LDG-HV



F&M Polars on Nominal Grids, All RANS Solutions

Global view:
• Some F&M agreement for low angles of attack

• CL is lower than in ONERA experiment

• No good agreement for CM for high angles of attack
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alpha, deg alpha, deg alpha, deg

Blue = SA
Red = SA-(RC)-QCR
Green = other
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Skin-Friction Contours, ⍺ = 10°  

R-025
2.R.03.C

R-024
2.R.03.C

R-022
2.L.01.C+

R-017
2.L.01.C

R-020
2.R.03.C

R-016.2
2.R.01.F

• Similar skin-friction patterns with separation outboard, on flaps, pylon, and nacelle 
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Skin-Friction Contours, ⍺ = 17.7°  

R-025
2.R.03.C

• Different skin-friction patterns with separation outboard, on flaps, pylon, and nacelle 

R-024
2.R.03.C

R-022
2.L.01.C+

R-017
2.L.01.C

R-020
2.R.03.C

R-016.2
2.R.01.F
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Skin-Friction Contours, ⍺ = 23.6°  

• Different skin-friction patterns; large inboard separation

R-024
2.R.03.C

R-022
2.L.01.C+

R-017
2.L.01.C

R-020
2.R.03.C

R-016.2
2.R.01.F



Configuration Build-Up Effect on CL 
R-001.1, R-002.2, R-003, R-004, R-009, R-010.1, R-011, R-015.3 

Dash-dot-dot line with square : Case 2.1

Long-dash line with triangle : Case 2.2

Dash-dot line with diamond : Case 2.3

Solid line with circle  : Case 2.4

• CL qualitatively follows configuration buildup trend:
o CL increases and CL, max angle decreases in Case 2.3 over Case 2.2

o Small changes in Case 2.4 from Case 2.3

• Good prediction of angle of CL, max in most solutions

• CL, max underpredicted for all configurations

alpha, deg alpha, deg
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Configuration Build-Up Effect on CL 
R-017.2, R-022.1, R-023.1, R-024, R-025 

• CL qualitatively follows configuration buildup trend

• CL, max underpredicted for all configurations

alpha, deg alpha, deg

68

alpha, deg

Dash-dot-dot line with square : Case 2.1

Long-dash line with triangle : Case 2.2

Dash-dot line with diamond : Case 2.3

Solid line with circle  : Case 2.4



Turbulence Model and Configuration Build-Up Effects on CL 
R-006, R-008, R-016 

Dash-dot-dot line with square : Case 2.1

Long-dash line with triangle : Case 2.2

Dash-dot line with diamond : Case 2.3

Solid line with circle  : Case 2.4

• No clear trend for turbulence-model variation

• CL qualitatively follows configuration build-up trend

• CL, max underpredicted for all configurations
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alpha, deg alpha, deg alpha, deg

R-006.1 = SST-QCR-a1

R-006.2 = SA

R-008.1 = SA

R-008.2 = Wilcox1988

R-016.1 = SA-QCR2013-RC

R-016.2 = SA



• Selected SA solutions agree to each other for Case 2.1 ⍺ ≤ 14°

o Iterative and grid convergence achieved

o Experimental data needed to assess accuracy of RANS models for these flow conditions

• Iterative and grid convergence are challenging for Cases 2.2, 2.3, and 2.4

o Qualitative agreement between solutions at low angles of attack

o Modifications in geometry, RANS models, solvers, and grids may be needed to enable 

converged solutions and assessment of RANS model accuracy for high angles of attack

• Qualitative comparison with ONERA experiment for Cases 2.2, 2.3, and 2.4

o Some agreement at low angles of attack

o At high angles of attack

✓ CL tends to be lower than experiment

✓ CD has qualitative agreement with experiment

✓ CM tends to be less negative than experiment

• F&M deltas qualitatively follow configuration buildup trend
70

Test Case 2: Summary



Test Case 3

71

Reynolds Number Study

M∞ = 0.2, Tref = 518.67 °R,

 ⍺ = 6°,10°, 14°, 16°, 18°, 19°, 20°, 22°  

3.1: ReMAC =   1.05⤬106 

3.2: ReMAC =   5.49⤬106 

3.3: ReMAC = 16.00⤬106 

3.4: ReMAC = 30.00⤬106 

NASA_5.2%-LDG
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Red  = SA-notf2-R or SA-RC-QCR
Blue = SA

Case 3.1: F&M Polars on Nominal Grids, All RANS Solutions

Global view:
• CL,max within [2.2, 2.35] achieved at 16° ≤ ⍺ ≤ 18°

• Some agreement between CL coefficients at low angles of attack

• Agreement deteriorates for high angles of attack

• Some relative agreement between CD coefficients at ⍺ ≤ 16°

• Poor agreement between CM coefficients, more data needed
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Red  = SA-notf2-R or SA-RC-QCR
Blue = SA

Global View:
• CL,max within [2.25, 2.52] achieved at 16° ≤ ⍺ ≤ 20°

• Poor agreement between CL coefficients 

• Some relative agreement between CD coefficients at ⍺ ≤ 18°

• Poor agreement between CM coefficients, more data needed

Case 3.2: F&M Polars on Nominal Grids, All RANS Solutions
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Red  = SA-notf2-R or SA-RC-QCR
Blue = SA

Global View:
• CL,max within [2.35, 2.60] achieved at 18° ≤ ⍺ ≤ 19°

• Poor agreement between CL coefficients 

• Some relative agreement between CD coefficients at ⍺ ≤ 18°

• Poor agreement between CM coefficients, more data needed

Case 3.3: F&M Polars on Nominal Grids, All RANS Solutions
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Red  = SA-notf2-R or SA-RC-QCR
Blue = SA

Global View:
• CL,max within [2.4, 2.7] achieved at 18° ≤ ⍺ ≤ 19°

• Poor agreement between CL coefficients 

• Some relative agreement between CD coefficients at ⍺ ≤ 18°

• Poor agreement between CM coefficients

Case 3.4: F&M Polars on Nominal Grids, All RANS Solutions



R-009 R-015.3

• Different skin-friction patterns
• “Pizza” disturbance appears outboard in all solutions
• Inboard separation observed in subset of submission

Case 3.4: Skin-Friction Visualization at ⍺=19°

R-002 R-003

R-016.4 R-021

R-001

76
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Trending down with

increasing Re

Case 3: Example (R-003) of Reynolds Number Effect 

Effects of Reynolds number increase
• CL,max and corresponding angle of attack increase
• CD has small relative change

• CM becomes more negative

Long-dash line with square : ReMAC =   5.49⤬106

Dash-dot line with triangle : ReMAC = 16.00⤬106

Solid line with circle  : ReMAC = 30.00⤬106



Case 3: Reynolds Number Effect on CL 
R-001, R-002, R-003, R-008, R-015.3, R-015.5 

Dash-dot-dot line with triangle : ReMAC =   1.05⤬106

Long-dash line with square : ReMAC =   5.49⤬106

Dash-dot line with diamond : ReMAC = 16.00⤬106

Solid line with circle  : ReMAC = 30.00⤬106
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Case 3: Reynolds Number Effect on CL 
R-016.1, R-016.2, R-016.3, R-016.4, R-021, R-023

Dash-dot-dot line with triangle : ReMAC =   1.05⤬106

Long-dash line with square : ReMAC =   5.49⤬106

Dash-dot line with diamond : ReMAC = 16.00⤬106

Solid line with circle  : ReMAC = 30.00⤬106
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Case 3: Reynolds Number Effect on CM 
R-001, R-002, R-003, R-008, R-015.3, R-015.5 

Dash-dot-dot line with triangle : ReMAC =   1.05⤬106

Long-dash line with square : ReMAC =   5.49⤬106

Dash-dot line with diamond : ReMAC = 16.00⤬106

Solid line with circle  : ReMAC = 30.00⤬106

80



Case 3: Reynolds Number Effect on CM 
R-016.1, R-016.2, R-016.3, R-016.4, R-021, R-023

Dash-dot-dot line with triangle : ReMAC =   1.05⤬106

Long-dash line with square : ReMAC =   5.49⤬106

Dash-dot line with diamond : ReMAC = 16.00⤬106

Solid line with circle  : ReMAC = 30.00⤬106
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• No iterative or grid convergence observed 

o No quantitative agreement between solutions

• F&M deltas qualitatively support following trends corresponding to 
Reynolds number increase

o CL,max and corresponding angle of attack increase

o CD has small relative change

o CM becomes more negative

82

Test Case 3: Summary



Effect of Slat Bracket 
Geometry and Gridding on 

RANS Solutions
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Effect of Spatial Grid Resolution of Brackets 
by Hidemasa Yasuda (Kawasaki Heavy Industries, Japan)

• Effect of grid resolution of slat brackets for Cases 3.2, 3.3, and 
3.4 at ⍺ = 6°

o Current grid resolution does not resolve structure of vortex generated by slat 

bracket

o Significantly different solutions (different separation patterns) for different 

grid resolutions

oLarge sensitivity of RANS solutions to small changes in gridding 

of brackets and/or discretization scheme, even for low angles of 

attack

oThis sensitivity may be linked to insufficient spatial grid 

resolution to represent the bracket wake
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Iterative Convergence Sensitivity to Geometry and Grid Resolution 
by Andrew Wick (Helden Aerospace)

• Grid refinement on brackets at Case 3.4, ⍺ = 10°

o Wake sources removed = slight improvement but drop in lift

o Surface mesh on brackets refined = convergence is worse 

o Layer mesh refined = did not affect convergence

o Iterative convergence unaffected by mesh resolution

• Geometry modification

o Case 2.2, ⍺ = 10°: Removing entire brackets = machine-zero residual convergence

o Case 2.2, ⍺ = 10°: Removing bracket mount = machine-zero residual convergence

o Case 3.4, ⍺ = 10°: Adding “filler” geometry into bracket gaps = residual convergence 

stalls on a single bracket in the middle of the wing

o Large sensitivity of RANS iterative convergence to bracket geometry
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• Agreement between selected RANS solutions for Case 1 and Case 2.1 (⍺ ≤ 14°)  

o Iterative convergence and grid convergence for selected solutions

o Importance of well-posed RANS models, grids that place degrees of freedom in right locations, 
and strong iterative solvers

o Sufficient accuracy to distinguish between solutions corresponding to different RANS models

o Experimental data for these flow regimes should allow assessment of RANS models

• Today, RANS solvers do not agree on solutions for complex configurations 
(Cases 2.2 – 2.4 and 3.1 – 3.4) at high angles of attack

o RANS solutions (deltas) qualitatively follow trends for configuration buildup and Reynolds number 
increase

o RANS model accuracy for these flow regimes cannot be assessed

o Different separation patterns observed

o “Pizza” disturbances prevent iterative convergence and grid convergence 

o Current gaps preventing quantitative assessment of  RANS models

✓ Lack of regularization of RANS models

✓ Insufficient understanding of grid-resolution aspects

✓ Insufficient robustness and efficiency of nonlinear solvers

✓ Iterative-convergence sensitivity to small geometry features (e.g., slat brackets) 86

Fixed-Grid RANS TFG Summary



• RANS predictions in comparison with ONERA experiment for 
Cases 2.2, 2.3, and 2.4

o Some agreement for low angles of attack 

o For high angles of attack 

✓CL is lower than experiment; some solutions show comparable CL for Case 2.2

✓CD has small relative difference from experiment;  higher for Case 2.2

✓CM is poorly predicted

• Possible topics for future studies

o Isolate bracket-geometry issue from ability to predict separated flows

✓ Focus on multiple angles of attack for Case 1 and/or higher angles of attack for Case 2.1

✓Use simplified bracket geometries for Cases 2.2-2.4

o Modify RANS models, grids, and solvers for relevant flow conditions

✓Demonstrate iterative convergence and grid convergence

✓ Establish reference solutions for RANS models in high-lift cases

✓Develop solver technology allowing iterative convergence for complex flows 
87

Fixed-Grid RANS TFG Summary



Answers to Key Questions

• Fixed-Grid RANS TFG Key Questions

o Can grid-converged solution be achieved with practical RANS solvers for high-lift 

configurations?

✓YES, RANS solvers can achieve grid-converged solutions on simple high-lift configurations

o Can different solvers using the same RANS model agree on grid-converged solution?

✓YES, RANS solvers can agree on grid-converged solutions

o What are requirements for different RANS solvers to agree on grid-converged solutions?

✓Verified implementation of the same well-posed turbulence model

✓Well-designed families of grids placing degrees of freedom in critical areas

✓Strong iterative solvers allowing iterative convergence for complex flows/configurations

o What insight RANS solutions can provide for experiments and turbulence models?

✓ Large sensitivity of iterative convergence to shape/gridding of slat brackets

✓Can we isolate effects of high angle of attack from effects of brackets?
88



Answers to Key Questions
• HLPW-5 Key Questions

o Case 1: Does consistency of integrated CFD forces/moments can be achieved for simple  high-lift configurations?

✓ YES, RANS solvers can achieve consistent solutions for simple configurations

o Case 2: Does consistency of CFD forces/moments change in configuration buildup?

✓ Consistency for Cases 2.2, 2.3, and 2.4 at high angles of attack is worse than consistency for Case 2.1. 

✓ Deterioration of iterative convergence may relate to fidelity of bracket resolution

✓ Some RANS solvers achieve converged solutions for configuration with brackets (Case 2.2)

✓ Iterative and grid convergence may be facilitated by simpler slat bracket shape or modifications in turbulence models

o Case 3: Does consistency of CFD forces/moments change with variation of Reynolds number?

✓ Do not have sufficient data

o Are there unique CFD modeling requirements (e.g., mesh, solver, etc.)?

✓ Consistent use of turbulence models

✓ Grids that place degrees of freedom in critical areas

✓ Strong iterative solver allowing iterative convergence for complex cases

✓ Ability to demonstrate iterative convergence and grid convergence
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Many Thanks to Fixed-Grid 
RANS TFG Participants!!!

Questions?

90
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