Fifth High-Lift Prediction Workshop (HLPW-5)

Fixed-Grid Reynolds-Averaged Navier-Stokes (RANS) Technical Focus Group (TFG)

August 2, 2024

Key Questions

HLPW-5 Key Questions

- Test Case 1: Can consistency of integrated CFD forces/moments be achieved for simple high-lift configurations?
- Test Case 2: Does consistency of CFD forces/moments change in configuration buildup?
- $_{\odot}$ Test Case 3: Does consistency of CFD forces/moments change with variation of Reynolds number?
- Are there unique CFD modeling requirements (e.g., mesh, solver, etc.)?

Fixed-Grid RANS TFG Key Questions

Can grid-converged solution be achieved with practical RANS solvers for high-lift configurations?
Can different solvers using the same RANS model agree on grid-converged solution?
What are requirements for different RANS solvers to agree on grid-converged solutions?
What insight RANS solutions can provide for experiments and turbulence models?

Outline

- Statistics of Fixed-Grid RANS Solutions
- Test Case 1: Verification
- Test Case 2 : Configuration buildup
- Test case 3 : Reynolds Number Effects
- Conclusion: Responses to Key Questions

Fixed-Grid RANS TFG Statistics

- 96 E-mail Addresses on Fixed-Grid RANS TFG Distribution List
- 26 Teams Submitted RANS Solutions on Fixed-Grid Families
 - $\circ~$ 23 R- teams and H-005, L-004, and L-005 teams
 - R- teams/codes listed at <u>https://hiliftpw.larc.nasa.gov/Workshop5/TFG_rans.html</u>
 - \circ 10 countries
 - Government labs, major aerospace companies, academic institutions, commercial software developers, and small businesses
 - o 224 independent sets of fixed-grid solutions

Fixed-Grid RANS Solutions

Discretization Approaches

• Node-centered, finite-volume, 2nd order • Cell-centered, finite-volume, 2nd order • Node-centered, continuous finite-element

RANS Models

 Spalart-Allmaras (SA) equations, including SA-neg and SA-noft2 variants \circ SA-R(C_{rot}=1)-QCR2000 equations

• Other models

Fixed-Grid Families

 POINTWISE, mixed-element (1.R.01, 1.R.09, 2.R.03, 3.R.01) • HELDENMESH, mixed-element (1.R.03, 1.R.05, 1.R.07, 2.R.01, 3.R.02) ANSYS ICEM CFD, hex-dominant (1.R.04, 1.L.01, 1.H.04, 2.L.01) STAR-CCM+, mixed-element (2.R.04) • Custom grids

RANS solutions on adapted grids are shown for reference

: 6 solvers, 69 sets

: 16 solvers, 141 sets

: 2 solvers, 14 sets

: 22 solvers, 150 sets

: 13 solvers, 32 sets

: 9 solvers, 42 sets

: 18 solvers, 83 sets

: 11 solvers, 76 sets

: 10 solvers, 31 sets

: 2 solvers, 9 sets

: 6 solvers, 18 sets

5

Solution Assessment Criteria

Iterative Convergence Criteria

 Machine-zero meanflow and turbulence-model residuals for steady-state solutions are desirable

✓ Rarely achieved for complex geometries (2.2-2.4, 3.1-3.4) and high angles of attack

 Relaxed criteria of 1% variation in established convergence pattern of forces and pitching moment (F&M) over last 20% of iterations

✓ Illustrated later on Case 1 example

Grid Convergence

- o Solutions on three or more grids in family, including fine enough grids
- Smaller variation between solutions on finer grids
- \circ Aerodynamic coefficients are plotted versus characteristic mesh size $h = N^{(-1/3)}$
 - \checkmark N is degrees of freedom: nodes for node-centered and cells for cell-centered solutions

Flow Conditions: $M_{\infty} = 0.2$, $Re_{MAC} = 5.6 \times 10^6$, $T_{ref} = 521^{\circ}R$, $\alpha = 11^{\circ}$

F&M Grid Convergence, All RANS Solutions

Blue = SA Red = SA-R(c_{rot}=1)-QCR2000 Green = other

Global view:

- With exception of outliers, relatively tight grouping of aerodynamic coefficients in grid refinement
- Hard to discern more details

Grid-size reference:

V =	1,000,000	N ^(-1/3) ~ 0.01
V =	5,000,000	N ^(-1/3) ~ 0.006
N =	10,000,000	N ^(-1/3) ~ 0.005
N =	100,000,000	N ^(-1/3) ~ 0.002
V =	300,000,000	N ^(-1/3) ~ 0.0015
N =	500,000,000	N ^(-1/3) ~ 0.0013
N =	1,000,000,000	N ^(-1/3) ~ 0.001

F&M Grid Convergence (Zoomed), All RANS Solutions

- Only two models have multiple submissions
- Selection is needed to assess agreement between solutions in grid refinement

Selection process:

- 1. Solutions computed with the same RANS model
- 2. Solutions converged iteratively on nominal grids
- 3. Solutions demonstrated grid convergence

Iterative Convergence, All RANS Solutions

Iterative convergence criteria: 1% variation in established convergence pattern of lift and pitching moment over last 20% of iterations

- Steady-state solution: mean varies by less than 1% and standard deviation is less than 1%
- Established oscillatory solution: mean and standard deviation vary by less than 1%

- With exception of outliers, solutions satisfy iterative convergence criteria
- Most solutions converged to steady state
- Many solutions converged residuals to low levels comparable with machine zero

F&M Grid Convergence, SA Solutions

- Grid-convergence trend, i.e., smaller solution variation on finer grids
- F&M ranges for SA solutions reduced by more than factor 2 for C_L and C_M; by 15 counts for C_D

11

Selected SA Solutions

Grid-converged solution established with high confidence

- C_D : 4% range [0.0635, 0.0660] (25 counts)
- C_M: 9% range [-0.070, -0.064]
- Solutions not satisfying iterative convergence criteria and solutions on 1.R.01 grids removed
- Grid-convergence plots colored by grid family

 $\begin{array}{l} C_L: \ 0.45\% \ range \ [1.075, \ 1.080] \\ C_D: \ 0.8\% \ range \ [0.0635, \ 0.0640], \ (5 \ counts) \\ C_M: \ 4.5\% \ range \ [-0.068, \ -0.065] \end{array}$

- Ranges of C_L and C_M reduced by factor 2
- Range of C_D reduced by 20 counts
- Residuals are well converged

Selected SA-R(c_{rot}=1)-QCR2000 Solutions

Grid-converged solution established with high confidence

- Ranges for C_L and C_M in SA and SA-R($c_{rot}=1$)-QCR2000 solutions do not overlap
- Distinctly different grid-converged solutions for each model
- Grid-convergence plots colored by grid family

All SA-R(c_{rot}=1)-QCR2000 solutions

 $\begin{array}{l} C_L: 2.3\% \mbox{ range } [1.066, \, 1.081] \\ C_D: \ 10\% \mbox{ range } [0.0630, \, 0.0694] \mbox{ (64 counts)} \\ C_M: \ 12\% \mbox{ range } [-0.063, \, -0.056] \end{array}$

Selected SA-R(c_{rot}=1)-QCR2000 solutions

 $C_L: 0.4\%$ range [1.067, 1.071] $C_D: 1\%$ range [0.0630, 0.0636], (6 counts) $C_M: 5\%$ range [-0.061, -0.058]

SP1.1 View: Outboard Wing Trailing-Edge Streamlines

Looking outboard at glancing angle, fuselage turned off

Distinctly different streamlines in SA and SA-R(c_{rot}=1)-QCR2000 solutions

Streamlines in Selected SA Solutions

• Similar streamlines in selected SA solutions

Skin-Friction Contours in Selected SA Solutions

• Similar skin-friction patterns in selected SA solutions

Surface Pressure, All RANS Solutions

Surface Pressure Suction Peak, Selected Solutions

<u>Case 1</u> Miscellaneous Observations

Eddy-viscosity profiles

Red = fixed grids Blue = adapted grids

Velocity Profiles

Test Case 1: Summary

RANS solvers agree on grid-converged solutions if

- $\,\circ\,$ Solutions computed with the same RANS model
 - Importance of well-posed RANS models (PDE solution exists, is unique, and continuously depends on input parameters)
- o Grid families place sufficient degrees of freedom in critically important areas
 - ✓ Importance of mesh-generation and aerodynamics experts in loop
- Iterative convergence is sufficient
 - ✓ Importance of strong nonlinear iterative solvers

Case 1 grid-converged solutions established with high confidence for SA and SA-R(c_{rot}=1)-QCR2000 models

- Different solvers computing on different grid families with the same RANS model converge aerodynamic coefficients within narrow ranges
- Grid-converged solutions distinguish between different RANS models, in aerodynamic coefficients and separation patterns
- $_{\odot}$ Can be used for validation

Test Case 2

Configuration Build-Up

Case 2.1

CRM-HL-WBHV

Flow Conditions: $M_{\infty} = 0.2$, $Re_{MAC} = 5.4 \times 10^{6}$, $T_{ref} = 518.67^{\circ}R$, $\alpha = 6^{\circ}, 10^{\circ}, 12^{\circ}, 13^{\circ}, 14^{\circ}, 15^{\circ}, 16^{\circ}$

F&M Polars on Nominal Grids, All RANS Solutions

Blue = SA Red = SA-R(c_{rot}=1)-QCR2000 Green = other

Global view:

- With exception of outliers, relatively good F&M agreement for $\alpha \le 12^{\circ}$
- Larger discrepancy at high angles of attack
- Some agreement for after-stall conditions, $\alpha = 16^\circ$; more studies needed

• Larger discrepancy at high angles of attack

F&M Grid Convergence, All RANS Solutions, $\alpha = 10^{\circ}$ and $\alpha = 12^{\circ}$

• With exception of outliers, F&M grid-convergence trend starts from coarse grids

F&M Grid Convergence, All RANS Solutions, $\alpha = 14^{\circ}$ and $\alpha = 15^{\circ}$

- Solutions at $\alpha = 14^{\circ}$ require finer grids to show grid convergence
- Solutions at $\alpha = 15^{\circ}$ do not show grid convergence •

Selected SA Solutions, $\alpha = 12^{\circ}$

Streamlines in Selected SA Solutions, $\alpha = 12^{\circ}$

• Similar mostly attached streamlines in selected solutions

Selected SA Solutions $\alpha = 14^{\circ}$

Streamlines in Selected SA Solutions, $\alpha = 14^{\circ}$

• Small differences in separation extent at trailing edge and wing tip

Skin-friction Contours in Selected SA Solutions, $\alpha = 14^{\circ}$

• Similar skin-friction contours in selected SA solutions

No Selected Solutions at $\alpha = 15^{\circ}$

- Few solutions
- Poor iterative convergence
- Grid convergence cannot be assessed
- Poor surface-pressure agreement at all sections

• Surface streamlines for solutions that agreed at $\alpha = 12^{\circ}$ and $\alpha = 14^{\circ}$ do not agree at $\alpha = 15^{\circ}$

Test Case 2.1: Summary

- Selected grid-converged SA solutions agree to each other for $\alpha \leq 14^{\circ}$
- Good iterative convergence for selected SA solutions for $\alpha \leq 14^{\circ}$
 - o Several solvers reported machine-zero residuals on nominal grids
 - $_{\odot}$ Many solutions converged to steady state

• Insufficient data at $\alpha = 15^{\circ}$

- $_{\odot}$ Few solutions have data on grid convergence and iterative convergence
- $_{\odot}$ Iterative convergence is worse than for lower angles of attack
 - \checkmark Deep residual convergence is elusive
- $_{\odot}$ No solutions selected
- \circ No agreement between solutions

<u>Case 2.2</u>

ONERA_LRM-WBSHV

Flow Conditions: $M_{\infty} = 0.2$, $Re_{MAC} = 5.9 \times 10^{6}$, $T_{ref} = 518.67^{\circ}R$, $\alpha = 6^{\circ}, 10^{\circ}, 12^{\circ}, 17.7^{\circ}, 20^{\circ}, 21.5^{\circ}, 23^{\circ}, 23.8^{\circ}$

F&M Polars on Nominal Grids, All RANS Solutions

Global View:

- Reasonable agreement between F&M for low angles of attack
- Large discrepancy for medium to high angles of attack
- In comparison to ONERA experiment
 - Reasonable agreement in F&M at low angles of attack
 - \circ At high angles of attack, $C_{L,max}$ is lower, C_D is higher, and C_M is less negative than ONERA experiment
 - \circ Some solutions have good agreement in C_L and C_D at all angles of attack
 - No agreement in CM at high angles of attack

Global view:

- Green circles mark R-004 solutions that converge to steady state and show deep residual convergence for Case 2.2 at all angles of attack
- With two exceptions, C_{L} variation is less than 10% up to $\alpha = 23^{\circ}$
- With a few exceptions, good agreement in C_D ; at $\alpha = 23^\circ$, C_D range is [0.2637, 0.2698], 61 counts
- With one exception, reasonable C_M agreement up to $\alpha = 17.7^\circ$; larger discrepancy at high angles of attack

F&M Grid Convergence, All RANS Solutions, $\alpha = 10^{\circ}$ and $\alpha = 17.7^{\circ}$

• At $\alpha = 17.7^{\circ}$, grid convergence is not clear; subset of solutions appear converging near experiment

F&M Grid Convergence, All RANS Solutions, $\alpha = 21.5^{\circ}$

• At $\alpha = 21.5^{\circ}$, no grid convergence can be discerned

Blue = SA
$Red = SA-R(c_{rot}=1)-QCR2000$
Green = other

Selected SA Solutions, $\alpha = 10^{\circ}$

Streamlines in Selected SA Solutions, $\alpha = 10^{\circ}$

• Similar mostly attached streamlines in selected SA solutions

Skin-Friction Contours in Selected SA Solutions, $\alpha = 10^{\circ}$

- Similar skin-friction contours in selected solutions
- No significant outboard separation

Selected SA Solutions, $\alpha = 17.7^{\circ}$

 $\begin{array}{l} C_L: \ 4.8\% \ range \ [1.63, \ 1.71] \\ C_D: \ 4.5\% \ range \ [0.1615, \ 0.1690], \ 75 \ counts \\ C_M: \ 10\% \ range \ [-0.502, \ -0.454] \end{array}$

- F&M ranges increased compared to $\alpha = 10^{\circ}$
- Very few solutions converged to steady state
 - Most established solutions oscillate
 - R-013 appears as outlier; good agreement for other angles
- F&M agreement improves on fine grids
 - $\circ~$ 2% C_L range, 41 count C_D range, and 2.6% C_M range on grids with 200M+ degrees of freedom

Skin-Friction Contours in Selected SA Solutions, $\alpha = 17.7^{\circ}$

- Significant differences in skin-friction contours midspan and outboard
- "Pizza" disturbance appears outboard, at different slat brackets

Selected SA Solutions, $\alpha = 21.5^{\circ}$

3-002.2

R-003

R-008.1

R-010.1 R-010.2 R-013

Skin-friction Contours in Selected SA Solutions, $\alpha = 21.5^{\circ}$

- Significant differences in skin-friction contours with "pizza" disturbances over entire wing
- R-003 and R-010.1 show relatively small "pizza" disturbances

No Solution Selected at $\alpha = 23.8^{\circ}$

3-002.2

R-008.1 R-010.1

R-010.2

R-013 R-022.1 R-023.1

R-003

Skin-Friction Contours at $\alpha = 23.8^{\circ}$

- Chaotic "pizza" disturbances over entire wing
- R-003 and R-010.1 show relatively small "pizza" disturbances

R-004 SA Solutions with Deep Residual Convergence

Custom STAR-CCM+ grids with enhanced orthogonality

• No "pizza" disturbances at high angles of attack

Test Case 2.2: Summary

Iterative convergence is more challenging than for Case 2.1

 $_{\odot}$ Many solvers arrive at steady state at low angles of attack

✓ R-004 consistently reported deep residual convergence for all angles of attack and no "pizza" disturbances

 $_{\odot}$ At high angles of attack, most established solutions are oscillatory

✓ In many solutions, "pizza" disturbances appear for $\alpha \ge 17.7^{\circ}$, mostly outboard

✓ Initiated at different slat brackets

Grid convergence is challenging for high angles of attack

 $_{\odot}$ Selected SA solutions show grid convergence and good agreement for α ≤ 10°

✓ F&M agreement improves on grids with 200M+ degrees of freedom

Agreement between solutions deteriorates for high angles of attack

✓ Fewer selected solutions and insufficient data for solutions assessment

✓ No grid convergence and no solution agreement at α = 21.5°; no selected solutions at α = 23.8°

Comparison with experiment

 $_{\odot}$ Relatively good agreement at low angles of attack

 $_{\odot}$ At high angles of attack

 \checkmark C_L tends to be lower than experiment

- $\checkmark\,C_{\rm D}$ tends to be higher than experiment
- \checkmark C_M tends to be less negative than experiment
- \checkmark In some solutions, C_L and C_D are relatively close to experiment at all angles of attack

 \checkmark No solution shows C_M close to experiment

Case 2.3

ONERA_LRM-WBSFHV

Flow Conditions: $M_{\infty} = 0.2$, $Re_{MAC} = 5.9 \times 10^{6}$, $T_{ref} = 518.67^{\circ}R$, $\alpha = 6^{\circ}, 10^{\circ}, 12^{\circ}, 14^{\circ}, 16^{\circ}, 17.7^{\circ}, 20.7^{\circ}, 23.5^{\circ}$

F&M Polars on Nominal Grids, All RANS Solutions

F&M Polars on Nominal Grids Selected SA Solutions

Global view:

- Poor iterative and grid convergence, especially at higher angles of attack
- Selected solutions have no benefits over all solution
- Usefulness of selection diminishes when iterative and grid convergence are lacking

Skin-Friction Contours, $\alpha = 10^{\circ}$

• Similar skin-friction patterns with separation outboard and on flaps

Skin-Friction Contours, $\alpha = 17.7^{\circ}$

• Significantly different skin-friction patterns; outboard and flap separation

Skin-Friction Contours, $\alpha = 23.5^{\circ}$

• Very different skin-friction patterns; large inboard separation

Test Case 2.3: Summary

- No benefits from selection
- Reasonable agreement between solutions at $\alpha = 10^{\circ}$
- Poor agreement at $\alpha = 17.7^{\circ}$ and $\alpha = 23.5^{\circ}$

Case 2.4

ONERA_LRM-LDG-HV

Flow Conditions: $M_{\infty} = 0.2$, $Re_{MAC} = 5.9 \times 10^{6}$, $T_{ref} = 518.67^{\circ}R$, $\alpha = 7.6^{\circ}, 10^{\circ}, 14^{\circ}, 16^{\circ}, 17.7^{\circ}, 19.7^{\circ}, 23.6^{\circ}$

F&M Polars on Nominal Grids, All RANS Solutions

Global view:

- Some F&M agreement for low angles of attack
- C_L is lower than in ONERA experiment
- No good agreement for C_M for high angles of attack

Skin-Friction Contours, $\alpha = 10^{\circ}$

• Similar skin-friction patterns with separation outboard, on flaps, pylon, and nacelle

Skin-Friction Contours, $\alpha = 17.7^{\circ}$

• Different skin-friction patterns with separation outboard, on flaps, pylon, and nacelle

Skin-Friction Contours, $\alpha = 23.6^{\circ}$

• Different skin-friction patterns; large inboard separation

Configuration Build-Up Effect on C_L R-001.1, R-002.2, R-003, R-004, R-009, R-010.1, R-011, R-015.3

Configuration Build-Up Effect on C_L R-017.2, R-022.1, R-023.1, R-024, R-025

• C_{L, max} underpredicted for all configurations

Turbulence Model and Configuration Build-Up Effects on C_L R-006, R-008, R-016

- No clear trend for turbulence-model variation
- C_L qualitatively follows configuration build-up trend
- C_{L, max} underpredicted for all configurations

Test Case 2: Summary

• Selected SA solutions agree to each other for Case 2.1 $\alpha \le 14^{\circ}$

- $_{\odot}$ Iterative and grid convergence achieved
- Experimental data needed to assess accuracy of RANS models for these flow conditions

• Iterative and grid convergence are challenging for Cases 2.2, 2.3, and 2.4

- Qualitative agreement between solutions at low angles of attack
- Modifications in geometry, RANS models, solvers, and grids may be needed to enable converged solutions and assessment of RANS model accuracy for high angles of attack

Qualitative comparison with ONERA experiment for Cases 2.2, 2.3, and 2.4

- $_{\odot}$ Some agreement at low angles of attack
- $_{\odot}$ At high angles of attack
 - $\checkmark\,C_L$ tends to be lower than experiment
 - \checkmark C_D has qualitative agreement with experiment
 - \checkmark C_M tends to be less negative than experiment

F&M deltas qualitatively follow configuration buildup trend

Test Case 3

Reynolds Number Study

3.1: $\text{Re}_{MAC} = 1.05 \times 10^{6}$ 3.2: $\text{Re}_{MAC} = 5.49 \times 10^{6}$ 3.3: $\text{Re}_{MAC} = 16.00 \times 10^{6}$ 3.4: $\text{Re}_{MAC} = 30.00 \times 10^{6}$

 $M_{\infty} = 0.2, T_{ref} = 518.67^{\circ}R,$ $\alpha = 6^{\circ}, 10^{\circ}, 14^{\circ}, 16^{\circ}, 18^{\circ}, 19^{\circ}, 20^{\circ}, 22^{\circ}$

Case 3.1: F&M Polars on Nominal Grids, All RANS Solutions

Global view:

- $C_{L,max}$ within [2.2, 2.35] achieved at $16^{\circ} \le \alpha \le 18^{\circ}$
- Some agreement between C_L coefficients at low angles of attack
- Agreement deteriorates for high angles of attack
- Some relative agreement between C_D coefficients at $\alpha \le 16^\circ$
- Poor agreement between C_M coefficients, more data needed
Case 3.2: F&M Polars on Nominal Grids, All RANS Solutions

Global View:

- $C_{L,max}$ within [2.25, 2.52] achieved at $16^{\circ} \le \alpha \le 20^{\circ}$
- Poor agreement between C_L coefficients
- Some relative agreement between C_D coefficients at $\alpha \le 18^\circ$
- Poor agreement between C_M coefficients, more data needed

Case 3.3: F&M Polars on Nominal Grids, All RANS Solutions

Global View:

- $C_{L,max}$ within [2.35, 2.60] achieved at $18^\circ \le \alpha \le 19^\circ$
- Poor agreement between C_L coefficients
- Some relative agreement between C_D coefficients at $\alpha \le 18^\circ$
- Poor agreement between C_M coefficients, more data needed

Case 3.4: F&M Polars on Nominal Grids, All RANS Solutions

Global View:

- $C_{L,max}$ within [2.4, 2.7] achieved at $18^\circ \le \alpha \le 19^\circ$
- Poor agreement between C_L coefficients
- Some relative agreement between C_D coefficients at $\alpha \le 18^\circ$
- Poor agreement between C_M coefficients

Case 3.4: Skin-Friction Visualization at α =19°

- Different skin-friction patterns
- "Pizza" disturbance appears outboard in all solutions
- Inboard separation observed in subset of submission

Case 3: Example (R-003) of Reynolds Number Effect

Effects of Reynolds number increase

- C_{L,max} and corresponding angle of attack increase
- C_D has small relative change
- C_M becomes more negative

Long-dash line with square	$: Re_{MAC} = 5.49 \times 10^{6}$
Dash-dot line with triangle	: Re _{MAC} = 16.00×10 ⁶
Solid line with circle	: Re _{MAC} = 30.00×10 ⁶

Case 3: Reynolds Number Effect on C_L R-001, R-002, R-003, R-008, R-015.3, R-015.5

Case 3: Reynolds Number Effect on C_L R-016.1, R-016.2, R-016.3, R-016.4, R-021, R-023

Case 3: Reynolds Number Effect on C_M R-001, R-002, R-003, R-008, R-015.3, R-015.5

Case 3: Reynolds Number Effect on C_M R-016.1, R-016.2, R-016.3, R-016.4, R-021, R-023

Test Case 3: Summary

No iterative or grid convergence observed

No quantitative agreement between solutions

- F&M deltas qualitatively support following trends corresponding to Reynolds number increase
 - $_{\odot}$ C $_{L,max}$ and corresponding angle of attack increase
 - \circ C_{D} has small relative change
 - $_{\odot}$ C $_{M}$ becomes more negative

Effect of Slat Bracket Geometry and Gridding on RANS Solutions

Effect of Spatial Grid Resolution of Brackets by Hidemasa Yasuda (Kawasaki Heavy Industries, Japan)

- Effect of grid resolution of slat brackets for Cases 3.2, 3.3, and 3.4 at $\alpha = 6^{\circ}$
 - Current grid resolution does not resolve structure of vortex generated by slat bracket
 - Significantly different solutions (different separation patterns) for different grid resolutions
 - Large sensitivity of RANS solutions to small changes in gridding of brackets and/or discretization scheme, even for low angles of attack
 - This sensitivity may be linked to insufficient spatial grid resolution to represent the bracket wake

Iterative Convergence Sensitivity to Geometry and Grid Resolution by Andrew Wick (Helden Aerospace)

• Grid refinement on brackets at Case 3.4, $\alpha = 10^{\circ}$

- Wake sources removed = slight improvement but drop in lift
- Surface mesh on brackets refined = convergence is worse
- Layer mesh refined = did not affect convergence
- **o Iterative convergence unaffected by mesh resolution**

Geometry modification

- \circ Case 2.2, α = 10°: Removing entire brackets = machine-zero residual convergence
- \circ Case 2.2, α = 10°: Removing bracket mount = machine-zero residual convergence
- \circ Case 3.4, α = 10°: Adding "filler" geometry into bracket gaps = residual convergence stalls on a single bracket in the middle of the wing

Large sensitivity of RANS iterative convergence to bracket geometry

Fixed-Grid RANS TFG Summary

• Agreement between selected RANS solutions for Case 1 and Case 2.1 ($\alpha \le 14^{\circ}$)

- $_{\odot}$ Iterative convergence and grid convergence for selected solutions
- Importance of well-posed RANS models, grids that place degrees of freedom in right locations, and strong iterative solvers
- Sufficient accuracy to distinguish between solutions corresponding to different RANS models
- o Experimental data for these flow regimes should allow assessment of RANS models

Today, RANS solvers do not agree on solutions for complex configurations (Cases 2.2 – 2.4 and 3.1 – 3.4) at high angles of attack

- RANS solutions (deltas) qualitatively follow trends for configuration buildup and Reynolds number increase
- $_{\odot}$ RANS model accuracy for these flow regimes cannot be assessed
 - $_{\odot}\,$ Different separation patterns observed
 - o "Pizza" disturbances prevent iterative convergence and grid convergence
- $_{\odot}$ Current gaps preventing quantitative assessment of RANS models
 - ✓ Lack of regularization of RANS models
 - \checkmark Insufficient understanding of grid-resolution aspects
 - \checkmark Insufficient robustness and efficiency of nonlinear solvers
 - ✓ Iterative-convergence sensitivity to small geometry features (e.g., slat brackets)

Fixed-Grid RANS TFG Summary

• RANS predictions in comparison with ONERA experiment for Cases 2.2, 2.3, and 2.4

- ${\scriptstyle \odot}$ Some agreement for low angles of attack
- $_{\odot}$ For high angles of attack
 - \checkmark C_L is lower than experiment; some solutions show comparable C_L for Case 2.2
 - \checkmark C_D has small relative difference from experiment; higher for Case 2.2
 - $\checkmark C_{\rm M}$ is poorly predicted

Possible topics for future studies

- $\ensuremath{\circ}$ Isolate bracket-geometry issue from ability to predict separated flows
 - ✓ Focus on multiple angles of attack for Case 1 and/or higher angles of attack for Case 2.1
 - ✓ Use simplified bracket geometries for Cases 2.2-2.4
- $_{\odot}$ Modify RANS models, grids, and solvers for relevant flow conditions
 - \checkmark Demonstrate iterative convergence and grid convergence
 - \checkmark Establish reference solutions for RANS models in high-lift cases
 - \checkmark Develop solver technology allowing iterative convergence for complex flows

Answers to Key Questions

Fixed-Grid RANS TFG Key Questions

- Can grid-converged solution be achieved with practical RANS solvers for high-lift configurations?
 - ✓ YES, RANS solvers can achieve grid-converged solutions on simple high-lift configurations
- o Can different solvers using the same RANS model agree on grid-converged solution?
 - ✓ YES, RANS solvers can agree on grid-converged solutions
- o What are requirements for different RANS solvers to agree on grid-converged solutions?
 - ✓ Verified implementation of the same well-posed turbulence model
 - \checkmark Well-designed families of grids placing degrees of freedom in critical areas
 - ✓ Strong iterative solvers allowing iterative convergence for complex flows/configurations
- o What insight RANS solutions can provide for experiments and turbulence models?
 - ✓ Large sensitivity of iterative convergence to shape/gridding of slat brackets
 - ✓ Can we isolate effects of high angle of attack from effects of brackets?

Answers to Key Questions

HLPW-5 Key Questions

- Case 1: Does consistency of integrated CFD forces/moments can be achieved for simple high-lift configurations?
 - ✓ YES, RANS solvers can achieve consistent solutions for simple configurations
- o Case 2: Does consistency of CFD forces/moments change in configuration buildup?
 - ✓ Consistency for Cases 2.2, 2.3, and 2.4 at high angles of attack is worse than consistency for Case 2.1.
 - ✓ Deterioration of iterative convergence may relate to fidelity of bracket resolution
 - ✓ Some RANS solvers achieve converged solutions for configuration with brackets (Case 2.2)
 - ✓ Iterative and grid convergence may be facilitated by simpler slat bracket shape or modifications in turbulence models
- o Case 3: Does consistency of CFD forces/moments change with variation of Reynolds number?
 - ✓ Do not have sufficient data
- \circ Are there unique CFD modeling requirements (e.g., mesh, solver, etc.)?
 - ✓ Consistent use of turbulence models
 - ✓ Grids that place degrees of freedom in critical areas
 - ✓ Strong iterative solver allowing iterative convergence for complex cases
 - ✓ Ability to demonstrate iterative convergence and grid convergence

Many Thanks to Fixed-Grid RANS TFG Participants!!!

Questions?