

WMLES Technology Focus Group Summary

Cetin C. Kiris Volcano Platforms Inc. <u>cetin@volcanoplatforms.com</u>

Special thanks to:

- WMLES TFG Participants for data submissions
- Jordan Angel & Aditya Ghate for their continuous support in post-processing
- Christopher Rumsey for compiling participants' submission data
- ONERA for providing Wind Tunnel data for Cases 2.2, 2.3, and 2.4
- HLPW5 leadership team and TFG leads

WMLES TFG Participants

TFG Name	WMLES	
Number of Active Participants	12 Teams	
Number of Observers	40+	

Participant ID	Organization	Code	(Case	es	Discretization	Grid Type	Time Integration	Grid Used
			1	2	3				Committee (C) Self (S)
W-001	КТН	Adaptive Euler	х	х	х	Finite Element (Incompressible)	Mixed Element	Implicit	С
W-003	Boeing	BCFD	х		x	2 nd order Finite Volume	Mixed Element	Implicit	S
W-004	Boeing & Cadence	CharLES	х	х	х	2 nd order Finite Volume	Voronoi	Explicit	S
W-005	NASA LaRC	FUN3D	х	х	х	2 nd order Finite Volume & Finite Element	Mixed Element	Implicit	С
W-006	U of Kansas	hpMusic	х	х	x	High order Flux Reconstruction	Mixed Element	Implicit	С
W-007	NASA ARC	LAVA	х	х	х	2 nd order Finite Volume	Voronoi	Explicit	S
W-009	Dassault Systems	PowerFLOW	х	х	х	Lattice Boltzmann (D3Q19 + Energy Equation)	Cartesian	Explicit	S
W-010	AWS & Volcano Platforms	Volcano ScaLES	х	х	x	4 th & 2 nd order Finite Difference	Cartesian	Explicit	S
W-011	Tohoku University	FFVHC-ACE			х	2 nd order Finite Difference	Cartesian	Explicit	S
W-012	Scientific-Sims LLC	NSU3D	х	x		2 nd order Finite Volume	Mixed Element	Implicit	С
W-013	Embraer	SU2		х		2 nd order Finite Volume	Mixed Element	Implicit	С
W-014	ANSYS	FLUENT		х		2 nd order Finite Volume	Mixed Element / Octree Cartesian	Implicit	S 2

WMLES TFG Solver Characteristics

https://hiliftpw.larc.nasa.gov/Workshop5/TFG_wmles.html

- Flow solvers: Navier-Stokes (10), lattice-Boltzmann (1), Adapted Euler (1)
- Spatial discretization: Finite Volume (6) & Finite Difference (4), Finite Element(2), HO(1)
- Time integration or iteration method: Implicit (7) & Explicit (5)
- Name of committee grids (or "self-prepared"): Self (8), Committee(5)
- Cases submitted: TC1 (6), TC2(10), TC3(9)
- Initialization method: Freestream cold-started (12)
- Grid topology: Mixed Element (7), Voronoi (2), Cartesian (3)
- Typical DoF (mesh points or cells) (Case #): 120 Million-11.6 Billion
- Wall modeling: Algebraic Equilibrium (10), Extended Turb. Model (1)
- SGS closure: Constant Vreman (7), Dynamic Smagorinsky (2), VLES(1), CSM(1), WALE(1)
- Transition treatment: **None** (10), Numerical Trip(1), TKE Wall Turb Sensor (1), Turbulent(1)
- Typical time step normalized by CTU: 10⁻³ 1.0⁻⁵
- Target wall-normal grid spacing normalized by MAC: $1.0^{-3} 1.0^{-4}$
- Aspect ratio range (tangential spacing/wall-normal): less than 5 (10), more than 5 (2)
- WM exchange location: $0.5-1.0\Delta x_{min}$ (7), $1.5\Delta x_{min}$ (1), $2.0\Delta x_{min}$ (1), $3.5\Delta x_{min}$ (1), $4\Delta x_{min}$ (1)

WMLES TFG Objectives for Case 1 & Case 2.1

- Identify challenges posed to WMLES for clean (untripped) wings at moderate Reynolds numbers.
 - Observation: Lack of explicit tripping leads to a scatter in numerical transition on the wing surface.
- Is there a potential to obtain grid convergence?
 - Observation: Maybe but because of the transition issue, it is unclear whether the converged solution is the "correct" solution

ÓAIAA

Case1: Time-step (implicit / explicit) & Grid spacing (isotropic / anisotropic)

Case 1: Load Time History (C_L)

Grid Resolution Studies (Force & Moment)

7.1 and 7.2 for Case 1 are from structural curvilinear grid. They are different submissions from 7.1 and 7.2 in Cases 2 & 3.

GAIAA

WMLES Challenges for Clean Wing Configurations

Grid – spacings are influenced by two properties:

- 1. Inviscid influence: Surface curvature
 - Wall-normal spacings are particularly important in high-curvature LE; sensitivity most-strongly seen in drag coefficient
- 2. Viscous influence: Boundary layer thickness
 - A. Log-law only applies in the bottom 15-25% of the BL -> dictates minimum number of points inside the BL (points-perdelta)
 - B. Behavior of WMLES under natural transition is still an open question -> this makes clean-wing WMLES particularly challenging and "unlike" fully-turbulent RANS

Main Flow Features: Case 1

Feature 1: Transition at LE

- Some effect on aerodynamic loads could be verified
- Massive variation amongst submissions
- "converged solution" CANNOT be established in the absence of tripping

Feature 2: Trailing Edge Separation

- Some effect on aerodynamic loads likely
- Some variation seem amongst participants
- "finest grid solution" shows some small variability across participants

Feature 3: Corner-Flow Separation

- Large variation amongst participants
- Influence on integrated aerodynamic loads is unlikely (very small bubble)
- "finest grid solution" shows small variability in the corner flow separation across participants

Feature 4: Outboard Leading Edge Separation

- Consistent observations amongst participants with refinement
- Some-influence on aerodynamic loads
- "converged solution" is consistent across participants

W-005.1

Case 1: Streamlines

Clean Wings – can numerical transition be correct?

Recall the notion of a virtual origin (Case 1) -

- Exact onset of transition is influenced by mesh, numerical dissipation and SGS closure
- Some submissions showed **artificially thickened boundary layer** on coarser grid (lower CL on coarser grids)
- Some submissions showed **slip-wall like behavior** on coarser grids (higher CL on coarser grids):
- Has ramifications on slat behavior on Case 2: Does the slat go turbulent too quickly? Turbulent slat BL -> lower slat lift

Case 1 Observations

- "Clean" wing involving free-transition at Re = 5.6 Million, is non-trivial for WMLES since it introduces additional uncertainties:
 - Even the finest grid submission is far too coarse to correctly predict natural transition
 - Unclear if methods based on no-slip wall treatment at LE (Bodart & Larsson, 2012) are accurate on isotropic grids with large wall-normal spacings; W-007 attempted this approach for Case 2.4 and obtained promising results for their specific grid
- More canonical problems (flat-plate and/or airfoils) are better to study transition behavior and sensitivities for WMLES
- Better definition for Case-1 (or Case 2.1) should have involved use of explicitly defined tripping – this would eliminate a major source of inconsistency amongst participants, and be consistent with the upcoming experiment
 - With tripping location specified explicitly, grid-convergence studies would make more sense to investigate features such as TE separation and corner-flow separation
 - No-slip/slip based BCs could be used upstream of tripping to prevent premature transition due to turbulent wall-stress

WMLES TFG Objectives for Case 2

- Assess quantitative accuracy of CLmax prediction in high-lift configurations using WMLES:
 - Observation: Many submissions have shown errors in CLmax that are within 1-2% of experimental data (via blind comparisons).
- Can WMLES predict the qualitative differences for configuration build-up?
 - Observation: Yes-many submission achieve a similar accuracy across all three configurations
- Identify challenges posed to WMLES when high-lift devices are used:
 - Observation: Slat (at CLmax) and flaps (at lower angles) continue to be the cause of scatter seen in participants. Incidentally, both lifting elements are at low Re_c.
- Does WMLES suffer from similar error cancellation observed in other methods?
 - Observation: Yes, but to a much lower extent compared to methods such as RANS. Some WMLES participants showing excellent CLmax agreement have been identified to do so because of error cancellation.

Case 2.1

Case 2.1: CRM-HL-WBHV

Angle of Attack (AoA)

Case 2.1: 6°, 10°, 12°, 13°, 14° Case 2.2: 6°, 10°, 17.7°, 20°, 21.5°, 23°, 23.8° Case 2.3: 6°, 10°, 14°, 16°, 17.7°, 20.7°, 23.5° Case 2.4: 7.6°, 10°, 14°, 16°, 17.7°, 19.7°, 23.6°

Participant ID	Solver	Coarse Grid	Medium Grid	Fine Grid	Blind Submission?
W-005.1	FUN3D (FV)	170M	575M	1.35B*	Yes
W-004.1	CharLES (DSM)	32.7M	115.8M	439.7M*	Yes
W-007	LAVA		114M	252M*	Yes
W-009	PowerFLOW		255M*	678M	Yes

Wind Tunnel (WT) data is not available. Experiment dates TBD

*Nominal grid used by participants. Presented grid size unless otherwise mentioned.

Case 2.1: W-004.1 Grid Resolution Study

Case 2.1: W-005 Grid Resolution Study

Case 2.1 Integrated F&M – All Submissions

Clean Wings – can "untripped" WMLES be predictive at low/moderate Re?

20

Case 2.1

W-004.1 Streamlines

SHAPING THE FUTURE OF AEROSPACE

SAIAA Case 2.1 W-007 Streamlines α = 13° α = 14° α = 12° Used explicit tripping for transition in the simulation Full mid/outboard wing Entire LE <u>separated</u> Stall grows separated Little-to-none TE separation Little-to-none corner separation

Case 2.2

Case 2.2: ONERA_LRM-WBSHV

Angle of Attack (AoA)

Case 2.1: 6°, 10°, 12°, 13°, 14° Case 2.2: 6°, 10°, 17.7°, 20°, 21.5°, 23°, 23.8° Case 2.3: 6°, 10°, 14°, 16°, 17.7°, 20.7°, 23.5° Case 2.4: 7.6°, 10°, 14°, 16°, 17.7°, 19.7°, 23.6°

Participant ID	Solver	Coarse Grid	Medium Grid	Fine Grid	Blind Submission?
W-001	Adaptive Euler	165K*			NO
W-005.1	FUN3D (FV)	225M		1.73B*	Coarse Grid Only
W-006	hpMusic	57M (DOF)	99M	159M*	YES
W-004.1	CharLES (DSM)	35M	126M	483M*	YES
W-007	LAVA			296M*	NO
W-009	PowerFlow		413M*	1.2B	YES
W-010.1	Volcano ScaLES (Vr)	355M	544M	1.09B*	YES
W-010.3	Volcano ScaLES (DSM)			872M*	NO

Wind Tunnel (WT) data is provided by ONERA

*Nominal grid used by participants. Presented grid size unless otherwise mentioned.

Case 2.2 Integrated F&M - All Submissions

31

ÓAIAA

α = 23.0° Case 2.2: Streamlines (in-board)

SAIAA

Case 2.2: Streamlines (out-board)

decreasing order of separation in trailing edge

α = 23.0°

decreasing order of separation in trailing edge

α = 23.0°

ର୍ଗ୍ଧାଧ୍ୟ

Case 2.2 – Observations

- 5 full angle of attack sweep submissions Two of them are within 2% error at CLmax
- Some inboard-outboard error cancellation
 - W-004: under-prediction of outboard suction: -3.9% CL error at 23.0 deg.
 - W-005: under-prediction of outboard suction -> -3.26% CL error at 23.0 deg.
 - W-006: Only two angle simulated but shows reasonable inboard CL with small underprediction outboard - had the lowest overall separated flow on the suction side: -1.3% CL error at 23.0 deg.
 - W-007: under-prediction of outboard suction: -3.16% CL error at 23.0 deg
 - W-009: Some over-prediction of inboard suction with moderate under-prediction of outboard suction:
 -0.8% CL error at 23.0 deg
 - W-010: Some over-prediction of inboard suction with reasonable agreement in outboard suction: -0.9% CL error at 23.0 deg
- All submissions predict the correct onset of stall
- W-001 (Euler) submission had reasonable CL values but completely inaccurate surface flow (missing TE separation on outboard wing, excess inboard separation) leading to inaccurate CMY

Case 2.3

Case 2.3: ONERA_LRM-WBSFHV

articipant ID	Solver	Coarse Grid	Medium Grid	Fine Grid	Blind Submission?
W-001	Adaptive Euler	165K*			NO
W-005.1	FUN3D (FV)	241M		1.85B*	Coarse Grid Only
W-005.2	FUN3D (FE)	241M*			NO
W-004.1	CharLES (DSM)	38M	138M	527M*	YES
W-007	LAVA			307M*	NO
W-009	PowerFlow	233M	605M*	1.03B	YES
W-010.1	Volcano ScaLES (Vr)	400M	622M	1.17B*	YES
W-010.3	Volcano ScaLES (DSM)			1.03B*	NO

Wind Tunnel (WT) data is provided by ONERA

*Nominal grid used by participants. Presented grid size unless otherwise mentioned.

Angle of Attack (AoA)

Case 2.1: 6°, 10°, 12°, 13°, 14° Case 2.2: 6°, 10°, 17.7°, 20°, 21.5°, 23°, 23.8° Case 2.3: 6°, 10°, 14°, 16°, 17.7°, 20.7°, 23.5° Case 2.4: 7.6°, 10°, 14°, 16°, 17.7°, 19.7°, 23.6°

Case 2.3 Integrated F&M – All Submissions

47

dAIAA

Caused on spurious inboard flap separation (experiment shows no evidence inboard flap separation in cp)

Case 2.3 – Low angle of attack Observations

- Flap-separation dominates the low-alpha integrated loads
- W-009 appears to be reasonably accurate with little error-cancellation; potentially underpredicts the lift from inboard flap due to excess separation
- W-010 is reasonably accurate but shows more inboard-outboard flap error cancellation (higher lift on inboard flap, lower lift on outboard flap); hence predicts a more nose-up moment
- W-007 consistently underpredicts flap suction but has quite accurate overall-lift; refinement study is missing current grid has coarsest flap resolution out of all participants
- W-004 and W-005 are overpredicting flap lift much higher overprediction for the outboard flap than for the inboard flap
- All submissions are severely under-resolved on the flap in terms of "points-per-flap-chord" (<1000)
- These findings carry over to lower angles of attack for Case 2.4

Case 2.3: Oilflow vs Streamlines $\alpha = 20.7^{\circ}$

Case 2.3 – High Angle of Attack Observations

- 5 submissions for full AoA sweep; only 1 submissions within reasonable error margin at CLmax:
 - Caveat: W-010 submission has less CLmax error but does show some inboard-outboard error cancellation; lift is correct but pitching moment is too nose-up
 - W-010 as well as W-009 and W-005 show over-prediction of inboard flap suction peaks
 - W-004.1 and W-007 show better agreement for wing-root suction peaks; but show large underpredictions for the outboard wing
 - All submissions (including W-010) show under-prediction of lift on the outboard flap -> consistent with systematically excess nose-up pitching moment in all submissions
- All submissions show correct qualitative stall-onset mechanism with separation occurring at the wing-root
- W-001 (Euler) is substantially less accurate compared to other WMLES participants

Case 2.4

Angle of Attack (AoA) Case 2.1: 6°, 10°, 12°, 13°, 14° Case 2.2: 6°, 10°, 17.7°, 20°, 21.5°, 23°, 23.8° Case 2.3: 6°, 10°, 14°, 16°, 17.7°, 20.7°, 23.5° Case 2.4: 7.6°, 10°, 14°, 16°, 17.7°, 19.7°, 23.6°

Wind Tunnel (WT) data is provided by ONERA

*Nominal grid used by participants. Presented grid size unless otherwise mentioned.

Participant ID	Solver	Coarse Grid	Medium Grid	Fine Grid	Blind Submission?
W-001	Adaptive Euler	228K*			YES
W-005.1	FUN3D (FV)	304M	998M	2.33B*	YES
W-005.2	FUN3D (FEM)	131M*			YES
W-005.3	FUN3D(FV)			419M*	NO
W-006	hpMusic	72M (DOF)	126M*	201M	YES
W-012	NSU3D	131M*			YES
W-013	SU2	131M*			YES
W-014	FLUENT			986M*	NO
W-004.1	CharLES (DSM)	168M	645M*	2.53B	YES
W-004.2	CharLES (Vr)		645M*		YES
W-007	LAVA	147M	325M	573M*	YES
W-009	PowerFLOW			575M*	YES
W-010.1	Volcano ScaLES (Vr)	436M	678M	1.26B*	YES
W-010.3	Volcano ScaLES (DSM)			1.08B*	YES

Case 2.4: W-005.1 (Finite Volume) vs W-005.2 (Finite Element)

ର୍ଗ୍ଧାନ୍ୟ

65

Case 2.4 Integrated F&M – All Submissions

Δ Difference: (Prediction – Experiment)

OAIAA

--★-- W-005.2 --▲-- W-013 --▲-- W-012 ----- WT

71

Case 2.4: Oilflow vs Streamlines. α = 19.7° Coarse Grid Solutions

Inaccurate flow patterns

Tendency to have accurate separation patterns - need to run on finer grids

ର୍ଗ୍ଧାଧ୍ୟ

Straighter side-of-body streamlines

Transition Treatment: W-007 Voronoi Grid

W-007 shows promising improvement based on a "transition sensor" to decide the switch between no-slip and WM boundary conditions

Arguments based on work by Bodart & Larrson (2012)

76

GAIAA

Transition Treatment: Tried by W-004 (Also Voronoi Grids)

Bottom line:

- Clear that the state of the slat boundary layer has an influence of the maximum lift value predicted
- "Altering" the location of slat transition may provide a "change in the correct-direction"
- Unclear if this specific method can be made predictive; time will tell as more participants investigate ideas
- Expect lots of work on this topic to be presented at SciTech 2025

Incipient Side of body separation at CLmax

Case 2.4: Oilflow vs Streamlines α = 19.7° Explicit & Cartesian Grids

Straighter side-of-body streamlines

WT Oilflow (ONERA) $\alpha = 19.7^{\circ}$

 Clmax for Case 2.3 does not show any flap separation; but Case 2.4 does show some flap separation near the flap-gap; potentially influenced by nacelle-wake

Case 2.4: Oilflow vs Streamlines

WT Oilflow (ONERA) $\alpha = 19.7^{\circ}$

Clmax for Case 2.3 does not show any • flap separation; but Case 2.4 does show some flap separation near the flap-gap; potentially influenced by nacelle-wake

Case 2.4: Oilflow vs Streamlines α = 23.6°

SAIAA

Case 2.4 – Observations

- 9 submissions only 3 within 2% CL error at CLmax:
 - The 3 submissions still show some evidence of inboard/outboard error-cancellation: over-predict inboard flap CL and under-predict outboard flap CL
 - Only 2 of those 3 submissions also predict the correct CL at lower angles
 - Most other participants under-predicted CLmax because of lower lift mid-board and out-board
- Flap-related challenges mostly consistent with those from Case 2.3; some submissions under-predict outboard flap flow-separation leading to much higher lift, others show some error cancellation
- All submissions predict the correct stall-onset mechanism (inboard stall)
 - Majority of participants did not show inboard separation at 19.7°; only 1 participant showed incipient separation
 - All participants showed well-formed inboard separation at 23.6°
 - Virtually all participants predicted the correct qualitative wedge-shaped flow-separation patterns on the outboard wing even on coarse grids
- W-001 (Euler) submissions has reasonable CLmax value but inaccurate flow (based surface and Cp): lots of error cancellation

Case 3

Angle of Attack (AoA) for each Re Number Case 3: 6°, 10°, 14°, 16°, 18°, 19°, 20°, 22°

*Nominal grid used by participants in Cases 3.1, 3.2, 3.3, 3.4

Participa nt ID	Solver	Grids Used			
W-001	Adaptive Euler	164K*			
W-003	BCFD	470*	569*		
W-005.1	FUN3D (FV)	460M	460M* 476M*		
W-006	hpMusic	83M (DOF)	145M*	232M	
W-004.1	CharLES (DSM)	103M	384M*	1.49B*	5.89B
W-007.2	LAVA	110M	193M	431M*	
W-009	PowerFLOW	65M 98M 125M	167M/ 240M 325M	457M* 627M* 826M*	1.37B
W-010.3	Volcano ScaLES (DSM)	256M	562M	1.08B*	1.25B
W-011	FFVHC-ACE	640M	2.56B	11.6B*	

Case 3.1: Re= 1.05 Million Case 3.2: Re= 5.49 Million Case 3.3: Re= 16 Million Case 3.4: Re= 30 Million

WMLES TFG Objectives for Case 3

- Can WMLES predict the first order effect the Reynolds number?
 - Observation: most submissions largely agree in qualitatively in terms of Re sensitivity
- Can we achieve grid-converged loads for the high-Reynolds number cases?
 - Observation: Maybe, but substantially higher resolution simulations are needed for confirmation; initial submissions look promising.
- Are some of the low-Re issues identified in Case 1 and 2 mitigated when large Re simulations are performed?
 - Observation: Unclear at this time, since high resolution simulations are needed to assess this rigorously.

N-003		W-009
N-004.1	8	W-010.3
<i>N</i> -005	Θ	W-011
<i>N</i> -006		

pitch break would occur in free-air (probably due to minor geometry change and AoA differences)

More scatter in CL at high-alpha, some scatter in low-alpha

Conclusions and Outlook

- Participants submitted 500+ simulation results with grid points ranging 120 Million through 11.6 Billion.
- Majority of results for Case 2 are from blind simulations.
- Extensive grid resolution studies were performed.
- Best practice grid results were relatively good agreement with the ONERA WT data (Cases 2.2, 2.3, and 2.4)
 - Flap-separation dominates the low-alpha integrated loads (Cases 2.3, and 2.4)
 - Some submissions under-predict outboard flap flow-separation leading to much higher lift
 - Majority of submissions predict the correct stall-onset mechanism (inboard stall)
 - Most participants predicted the correct qualitative wedge-shaped flow-separation patterns on the outboard wing
 - Coarse grid results suffer predicting Clmax and flow patterns accurately
 - (Euler) submissions has reasonable CLmax value but inaccurate flow (based surface and Cp): lots of error cancellation
- Case 3 submissions showed scatter due to flap suction peak. Finer resolution may be required in these regions even low Re cases (2.4 and 3.2)
- Transition treatment improved CLmax for one participant's results for Case 2.4. Further sensitivity studies are is necessary along with WT data.
- Clean wing WT data will be extremely helpful (Case 1 and/or Case 2.1). WMLES simulations should be carried out exactly how the transition is treated in the experiment.