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WMLES TFG Participants 
TFG Name WMLES
Number of Active Participants 12 Teams

Number of Observers 40+

Participant 
ID

Organization Code Cases Discretization Grid Type Time 
Integration

Grid Used

1 2 3 Committee 
(C) Self (S)

W-001 KTH Adaptive 
Euler

x x x Finite Element (Incompressible) Mixed Element Implicit C

W-003 Boeing BCFD x x 2nd order Finite Volume Mixed Element Implicit S

W-004 Boeing & Cadence CharLES x x x 2nd order Finite Volume Voronoi Explicit S

W-005 NASA LaRC FUN3D x x x 2nd order Finite Volume & Finite Element Mixed Element Implicit C

W-006 U of Kansas hpMusic x x x High order Flux Reconstruction Mixed Element Implicit C

W-007 NASA ARC LAVA x x x 2nd order Finite Volume Voronoi Explicit S

W-009 Dassault Systems PowerFLOW x x x Lattice Boltzmann (D3Q19 + Energy Equation) Cartesian Explicit S

W-010 AWS & Volcano 
Platforms

Volcano 
ScaLES

x x x 4th & 2nd order Finite Difference Cartesian Explicit S

W-011 Tohoku University FFVHC-ACE x 2nd order Finite Difference Cartesian Explicit S

W-012 Scientific-Sims LLC NSU3D x x 2nd order Finite Volume Mixed Element Implicit C

W-013 Embraer SU2 x 2nd order Finite Volume Mixed Element Implicit C

W-014 ANSYS FLUENT x 2nd order Finite Volume Mixed Element / 
Octree Cartesian

Implicit S
2
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WMLES TFG Solver Characteristics
• Flow solvers: Navier-Stokes (10), lattice-Boltzmann (1), Adapted Euler (1)

• Spatial discretization: Finite Volume (6) & Finite Difference (4), Finite Element(2), HO(1)
• Time integration or iteration method: Implicit (7) & Explicit (5)

• Name of committee grids (or “self-prepared”):  Self (8), Committee(5)
• Cases submitted: TC1 (6), TC2(10), TC3(9)
• Initialization method: Freestream cold-started (12)

• Grid topology: Mixed Element (7), Voronoi (2), Cartesian (3)
• Typical DoF (mesh points or cells) (Case #): 120 Million-11.6 Billion

• Wall modeling: Algebraic Equilibrium (10), Extended Turb. Model (1)
• SGS closure: Constant Vreman (7), Dynamic Smagorinsky (2), VLES(1), CSM(1), WALE(1)

• Transition treatment: None (10), Numerical Trip(1), TKE Wall Turb Sensor (1), Turbulent(1)
• Typical time step normalized by CTU: 10-3 – 1.0-5

• Target wall-normal grid spacing normalized by MAC: 1.0-3 – 1.0-4

• Aspect ratio range (tangential spacing/wall-normal): less than 5 (10), more than 5 (2)

• WM exchange location: 0.5-1.0Dxmin (7), 1.5Dxmin (1), 2.0Dxmin (1), 3.5Dxmin (1), 4Dxmin (1)

Mixed
Element

Voronoi

Cartesian

https://hiliftpw.larc.nasa.gov/Workshop5/TFG_wmles.html



WMLES TFG Objectives for Case 1 & Case 2.1

• Identify challenges posed to WMLES for clean (untripped) wings at moderate 
Reynolds numbers.

• Observation: Lack of explicit tripping leads to a scatter in numerical 
transition on the wing surface.

• Is there a potential to obtain grid convergence?

• Observation: Maybe but because of the transition issue, it is unclear 
whether the converged solution is the "correct" solution

5th CFD High Lift Prediction Workshop
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Case1: Time-step (implicit / explicit) & Grid spacing (isotropic / anisotropic)
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More 
anisotropic 

Spatial refinement 
at a fixed time-step

● Implicit time-stepping
◆ Explicit time-stepping

3mm/0.11inch = y+ of approx. 100 at approx. 25% MAC 

Used finest grid, but 
largest time-step



Case 1: Load Time History (CL)
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Mixed Element

Structured
Curvilinear

Voronoi Cartesian

Mixed Element
High Order

Voronoi



Grid Resolution Studies (Force & Moment)
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7.1 and 7.2 for Case 1 are from structural curvilinear grid.
They are different submissions from 7.1 and 7.2 in Cases 2 & 3.  

W-009 and W-010 (with high 
CL values) submissions also 
show least sensitivity to slat-
transition in case 2



Leading Edge
Suction Peak

Cp at Row A 

Trailing Edge
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Leading Edge
Suction Peak

Cp at Row D

Trailing Edge

Cp “bumps” 
correlated with 
transition and 
“tendency” for 
laminar separation
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Leading Edge
Suction Peak

Cp at Row J

Trailing Edge

Large scatter due to 
outboard LE separation



WMLES Challenges for Clean Wing Configurations 
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Grid – spacings are influenced by two properties: 
1. Inviscid influence: Surface curvature 

• Wall-normal spacings are particularly important in high-curvature LE; sensitivity most-strongly seen in drag coefficient
2. Viscous influence: Boundary layer thickness

A. Log-law only applies in the bottom 15-25% of the BL -> dictates minimum number of points inside the BL (points-per-
delta)

B. Behavior of WMLES under natural transition is still an open question -> this makes clean-wing WMLES particularly 
challenging and “unlike” fully-turbulent RANS

Figure Courtesy of Upstream CFD

Typical RANS 
solution

Typical DNS

Open Question: How should 
WMLES model transition? 
Primarily applicable for Case 1 
and Case 2.1 (absence of tripping 
or slat wakes) 

Laminar Solution

Open Question: How 
should WMLES behave 
when BL is “subgrid”   
---> relevant for LE “Virtual origin” of the TBL 

(location sensitive to AoA); 
laminar separation bubbles

“Clean” wing/airfoil WMLES at 
low-Re is not common – handful of 
examples in literature: Balakumar 
(2020), Ghate et al. (2022) &  Goc 
et al. (2023); vast majority of 
simulations use “tripping”



Main Flow Features: Case 1 
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W-005.1

Feature 2: Trailing Edge 
Separation 
• Some effect on 

aerodynamic loads likely
• Some variation seem 

amongst participants
• “finest grid solution” 

shows some small 
variability across 
participants

Feature 1: Transition at LE
• Some effect on 

aerodynamic loads 
could be verified

• Massive variation 
amongst submissions

• “converged solution” 
CANNOT be 
established in the 
absence of tripping

Feature 3: Corner-Flow 
Separation
• Large variation amongst 

participants
• Influence on integrated 

aerodynamic loads is 
unlikely (very small bubble)

• “finest grid solution” 
shows small variability in 
the corner flow separation 
across participants

W-006

Feature 4: Outboard Leading 
Edge Separation
• Consistent observations 

amongst participants with 
refinement

• Some-influence on 
aerodynamic loads 

• “converged solution” is 
consistent across 
participants

W-004.1

W-009

W-010



Case 1: Streamlines
 finest submitted grids

13

W-004.3 
(Strand 4:1)

Lower TE 
separation with 
wall-normal 
refinement

W-004.1 
(Voronoi)
Higher TE 
separation with 
refinement – but 
also transition-
sensitive

W-006 (HO-P5)
TE separation 
sensitivity very 
minor compared 
to transition 
sensitivity with 
refinement

W-005.1 
(Mixed Element)
Lower TE separation 
with refinement

W-007.2 (Curvilinear)
Lower TE 
separation with 
refinement – 
very large 
sensitivity to 
flux/discretizati
on at transition

W-007.3 (Voronoi)
TE separation 
grid sensitivity 
minor – massive 
sensitivity to grid 
seen at 
LE/transition; 
had to use 
tripping

W-009 
(Cartesian LBM)
TE separation 
not very 
sensitive to 
grid; transition 
is not an issue; 
all grid 
sensitivity 
limited to 
outboard
LE

W-001 
No skin-friction/slip walls

W-010 
(Cartesian IB)
Little TE 
separation 
sensitivity to 
grid; large 
grid 
sensitivity to 
transition 
location 

W-012 (W-005.1 
medium grid)
Lower TE separation 
with refinement



5th CFD High Lift Prediction Workshop
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Recall the notion of a virtual origin (Case 1) –
• Exact onset of transition is influenced by mesh, numerical 

dissipation and SGS closure 
• Some submissions showed artificially thickened boundary 

layer on coarser grid (lower CL on coarser grids)
• Some submissions showed slip-wall like behavior on coarser 

grids (higher CL on coarser grids): 
• Has ramifications on slat behavior on Case 2: Does the slat go 

turbulent too quickly? Turbulent slat BL -> lower slat lift

Clean Wings – can numerical transition be correct? 

Refinement causes 
transition to move 

upstream and becomes 
“more intense”

Row D 
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• “Clean” wing involving free-transition at Re = 5.6 Million, is non-trivial for WMLES since it 
introduces additional uncertainties:

• Even the finest grid submission is far too coarse to correctly predict natural transition
• Unclear if methods based on no-slip wall treatment at LE (Bodart & Larsson, 2012) are 

accurate on isotropic grids with large wall-normal spacings; W-007 attempted this 
approach for Case 2.4 and obtained promising results for their specific grid

• More canonical problems (flat-plate and/or airfoils) are better to study transition behavior 
and sensitivities for WMLES 

• Better definition for Case-1 (or Case 2.1) should have involved use of explicitly defined 
tripping – this would eliminate a major source of inconsistency amongst participants, and 
be consistent with the upcoming experiment

• With tripping location specified explicitly, grid-convergence studies would make more 
sense to investigate features such as TE separation and corner-flow separation 

• No-slip/slip based BCs could be used upstream of tripping to prevent premature 
transition due to turbulent wall-stress

Case 1 Observations



WMLES TFG Objectives for Case 2
• Assess quantitative accuracy of CLmax prediction in high-lift configurations using WMLES:

• Observation: Many submissions have shown errors in CLmax that are within 1-2% of 
experimental data (via blind comparisons).

• Can WMLES predict the qualitative differences for configuration build-up?

• Observation: Yes-many submission achieve a similar accuracy across all three 
configurations

• Identify challenges posed to WMLES when high-lift devices are used:

• Observation: Slat (at CLmax) and flaps (at lower angles) continue to be the cause 
of scatter seen in participants. Incidentally, both lifting elements are at low Re_c.

• Does WMLES suffer from similar error cancellation observed in other methods? 

• Observation: Yes, but to a much lower extent compared to methods such as RANS. 
Some WMLES participants showing excellent CLmax agreement have been identified to 
do so because of error cancellation. 16
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Case 2.1

Participant 
ID Solver Coarse Grid Medium 

Grid Fine Grid Blind 
Submission?

W-005.1 FUN3D (FV) 170M 575M 1.35B* Yes

W-004.1 CharLES (DSM) 32.7M 115.8M 439.7M* Yes

W-007 LAVA 114M 252M* Yes

W-009 PowerFLOW 255M* 678M Yes

Wind Tunnel (WT) data is not available. Experiment dates TBD

*Nominal grid used by participants. Presented grid size unless otherwise mentioned.Angle of Attack (AoA) 
Case 2.1: 6o , 10o , 12o , 13o , 14o 
Case 2.2: 6o , 10o , 17.7o , 20o , 21.5o , 23o , 23.8o 
Case 2.3: 6o , 10o , 14o , 16o , 17.7o , 20.7o , 23.5o 
Case 2.4: 7.6o , 10o , 14o , 16o , 17.7o , 19.7o , 23.6o



Case 2.1: W-004.1 Grid Resolution Study  
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Case 2.1: W-005 Grid Resolution Study  
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Clean Wings – can “untripped” WMLES be predictive at 
low/moderate Re? 

Participants 
showing low clean-
wing lift also show 
low-slat lift for Case 
2 due to early slat-
transition and/or 
thickened slat BLs

Shows high CL on Case 
1, Case 2.1 and also on 
slats for Case 2.2 
onwards (uses RANS for 
the attached LE 
boundary layers)

Case 2.1 Integrated F&M – All Submissions 



Case 2.1 
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W-004.1 Streamlines  

a = 12o a = 13o a = 14o

TE separation

Small corner-
flow separation

TE separation 
grows 
significantly

Some outboard 
LE separation

Entire mid/outboard 
wing separated



Case 2.1 
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W-007 Streamlines  

a = 12o a = 13o a = 14o

Little-to-none TE 
separation

Little-to-none 
corner 
separation

Used explicit 
tripping for 
transition in the 
simulation

Full mid/outboard wing 
separated Stall grows 

Entire LE 
separated



Case 2.1 
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W-005.1 Streamlines  

a = 12o a = 13o a = 14o

Little-to-none TE 
separation

Little-to-none 
corner 
separation

Some TE 
separation

Increasing TE 
separation (lift still 
increasing)

Some outboard 
LE separation



Case 2.1 
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W-009 Streamlines  

a = 12o a = 13o a = 14o

Little-to-none TE 
separation

Little-to-none TE 
separation

Little-to-none TE 
separation

Some outboard 
LE separation Outboard LE 

separation grows

Outboard LE 
separation grows

Small corner-
flow separation
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Case 2.2
Participant 

ID Solver Coarse 
Grid

Medium 
Grid Fine Grid Blind 

Submission?

W-001 Adaptive Euler 165K* NO

W-005.1 FUN3D (FV) 225M 1.73B* Coarse Grid 
Only

W-006 hpMusic 57M 
(DOF) 99M 159M* YES

W-004.1 CharLES (DSM) 35M 126M 483M* YES

W-007 LAVA 296M* NO

W-009 PowerFlow 413M* 1.2B YES

W-010.1 Volcano ScaLES (Vr) 355M 544M 1.09B* YES

W-010.3 Volcano ScaLES (DSM) 872M* NO

*Nominal grid used by participants. Presented grid size unless otherwise mentioned.

Wind Tunnel (WT) data is provided by ONERA
Angle of Attack (AoA) 
Case 2.1: 6o , 10o , 12o , 13o , 14o 
Case 2.2: 6o , 10o , 17.7o , 20o , 21.5o , 23o , 23.8o 
Case 2.3: 6o , 10o , 14o , 16o , 17.7o , 20.7o , 23.5o 
Case 2.4: 7.6o , 10o , 14o , 16o , 17.7o , 19.7o , 23.6o



Case 2.2: W-004.1 Grid Resolution Study  
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Case 2.2: W-005.1 Grid Resolution Study  
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Case 2.2: W-009 Grid Resolution Study  
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Case 2.2: W-010.1 Grid Resolution Study  
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Case 2.2: W-010 SGS Closure & Precision Sensitivity



Case 2.2 Integrated F&M - All Submissions
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EULER



Case 2.2: Streamlines (in-board)
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W-004.1 W-005.1 W-006

W-007 W-009 W-010.3

a = 23.0o

-1.3% 
CL Error

-3.9% 
CL Error

-3.26% 
CL Error

-0.8% 
CL Error

-3.16% 
CL Error

-0.9% 
CL Error
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W-004.1 W-005.1 W-010.3

Case 2.2: Streamlines (out-board)a = 23.0o

decreasing order of separation in trailing edge

-3.9% 
CL Error

-3.26% 
CL Error

-0.9% 
CL Error
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W-006W-009 W-007

Case 2.2: Steamlines (out-board)a = 23.0o

decreasing order of separation in trailing edge

-1.3% 
CL Error

-3.16% 
CL Error

-0.8% 
CL Error



Case 2.2: Cp Cuts(in-board)
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a = 23.0o

Possible over-
prediction of 
suction peak

W-004 seems to over-predict side-of-
body separation; others under-predict

Row A 

W-009 and W-010, participants 
with <1% CLmax error are slightly 
over-predicting wing-root suction 



Case 2.2: Cp Cuts(out-board)
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Row G

Most participants 
under-predict 
suction peak, 
except for W-009 
and W-010

All participants are under-predicting 
suction on the outboard main 
element

a = 23.0o
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W-007.1

W-001
EULER

W-004

WT Oilflow (ONERA)

Case 2.2: Streamlines
more-complicated – 
bistable solution 
likely

a = 23.8o



W-009

W-005

W-010.3

WT Oilflow (ONERA)

Case 2.2: Steamlines
more-complicated – 
bistable solution 
likely

a = 23.8o

38



39

Case 2.2: Cp Cuts (in-board)

Row A

a = 23.8o

Lots of variation in terms of 
amount of flow-separation
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Case 2.2: Cp Cuts 
(out-board) - a = 23.8o

Row I

Row G

W-009 and W-010 have better 
agreement with experiment Cp on the 
outboard wing



Case 2.2 – Observations
• 5 full angle of attack sweep submissions –  Two of them are within 2% error at CLmax
• Some inboard-outboard error cancellation

o W-004: under-prediction of outboard suction: -3.9% CL error at 23.0 deg.
o W-005: under-prediction of outboard suction -> -3.26% CL error at 23.0 deg.
o W-006: Only two angle simulated but shows reasonable inboard CL with small under-

prediction outboard - had the lowest overall separated flow on the suction side: -1.3% CL error at 23.0 
deg.

o W-007: under-prediction of outboard suction: -3.16% CL error at 23.0 deg
o W-009: Some over-prediction of inboard suction with moderate under-prediction of outboard suction: 

-0.8% CL error at 23.0 deg
o W-010: Some over-prediction of inboard suction with reasonable agreement in outboard suction: -

0.9% CL error at 23.0 deg

• All submissions predict the correct onset of stall
• W-001 (Euler) submission had reasonable CL values but completely inaccurate surface 

flow (missing TE separation on outboard wing, excess inboard separation) leading to 
inaccurate CMY

41
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Case 2.3

*Nominal grid used by participants. Presented grid size unless otherwise mentioned.

Wind Tunnel (WT) data is provided by ONERA

Participant 
ID Solver Coarse 

Grid
Medium 

Grid Fine Grid Blind 
Submission?

W-001 Adaptive Euler 165K* NO

W-005.1 FUN3D (FV) 241M 1.85B* Coarse 
Grid Only

W-005.2 FUN3D (FE) 241M* NO

W-004.1 CharLES (DSM) 38M 138M 527M* YES

W-007 LAVA 307M* NO

W-009 PowerFlow 233M 605M* 1.03B YES

W-010.1 Volcano ScaLES (Vr) 400M 622M 1.17B* YES

W-010.3 Volcano ScaLES (DSM) 1.03B* NO

Angle of Attack (AoA) 
Case 2.1: 6o , 10o , 12o , 13o , 14o 
Case 2.2: 6o , 10o , 17.7o , 20o , 21.5o , 23o , 23.8o 
Case 2.3: 6o , 10o , 14o , 16o , 17.7o , 20.7o , 23.5o 
Case 2.4: 7.6o , 10o , 14o , 16o , 17.7o , 19.7o , 23.6o



Case 2.3: W-004.1 Grid Resolution Study  
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Case 2.3: W-005 Grid Resolution Study  
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Case 2.3: W-010.1 Grid Resolution Study  
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Case 2.3: W-010 SGS Closure & Precision Sensitivity
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Case 2.3 Integrated F&M – All Submissions
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All participants are 
>2% lower CLmax 

2 out of 5 
participants show 
excess low-alpha lift



Case 2.3: Streamlines a = 6.0o
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W-004.1

W-007

W-005

W-010.3

W-009

Shows separated 
flow on inboard flap



Case 2.3: Cp Cuts(in-board)
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a = 6.0o

Row A

Row B

• W-004, W-005, W-007 and W-010 
overpredict suction

• W-009 is accurate

• W-004 and W-010 are accurate
• W-005 over-predicts suction peak
• W-007 & W-009 underpredict suction

For in-board flap contribution to lift:
• W-004 overpredicts
• W-005 overpredicts
• W-007 has error cancellation – 

underpredicts 
• W-009 underpredicts
• W-010 overpredicts 

Caused on spurious inboard flap separation (experiment shows no evidence inboard flap separation in cp)



Case 2.3: Cp Cuts(out-board flaps)
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a = 6.0o

Row D

Row E Row G

For out-board flap contribution to lift:
• W-004 and W-005 have large overprediction
• W-007 and W-009 have slight underprediction

Main Takeaway: Accurate prediction of flap 
separation continues to be a challenge, although 
some do better than others. All submissions are 
severely under-resolved in terms of points-per-
chord (<1000)



Case 2.3 – Low angle of attack Observations

• Flap-separation dominates the low-alpha integrated loads 
• W-009 appears to be reasonably accurate with little error-cancellation; potentially 

underpredicts the lift from inboard flap due to excess separation
• W-010 is reasonably accurate but shows more inboard-outboard flap error cancellation 

(higher lift on inboard flap, lower lift on outboard flap); hence predicts a more nose-up 
moment

• W-007 consistently underpredicts flap suction but has quite accurate overall-lift; 
refinement study is missing – current grid has coarsest flap resolution out of all participants

• W-004 and W-005 are overpredicting flap lift – much higher overprediction for the 
outboard flap than for the inboard flap

• All submissions are severely under-resolved on the flap in terms of "points-per-flap-chord" 
(<1000)

• These findings carry over to lower angles of attack for Case 2.4
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Case 2.3: Streamlines a = 20.7o
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W-004.1

W-005.1

W-007.1

W-010.3

W-009Participant's grid refinement suggested
straightening of this streamline with refinement

Wedge-shape formed by the streamline 
starting at the slat cut-out appears to be 
more consistent for W-004.1 and W-007

Overpredict inboard flap 
suction peaks



Case 2.3: Oilflow vs Streamlines 
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a = 20.7o

W-004

W-010W-009

W-005

W-007

WT Oilflow (ONERA)



Case 2.3: Cp Cuts(in-board)
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a = 20.7o Row A

• W-005, W-009 and W-010 over-predicting peak suction the inboard flap
• W-004 and W-007 are reasonably accurate with the least over-prediction



Row BCase 2.3: Cp Cuts(in-board)
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a = 20.7o

• W-004, W-005, and W-010 are reasonably accurate
• W-007 and W-009 slightly underpredict flap suction peaks



Row DCase 2.3: Cp Cuts(mid-board)
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a = 20.7o

Most submissions other than W-010.3 appear to slightly underpredict the suction on the main-element

All participants under-predict flap suction; W-010 
has the least under-prediction



Row ECase 2.3: Cp Cuts(out-board)
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a = 20.7o

Very similar observations to Row D

Majority of submissions under-predict suction 
on both main-element and flap

Bumps represent slat 
transition under adverse 
pressure gradient



Row GCase 2.3: Cp Cuts(out-board)
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a = 20.7o

Similar trends as in Rows D and E

Main Takeaways: 
W-009 and W-010 are primarily under-predicting 
CLmax due to the outboard flap

W-004, W-005 and W-007 have large CLmax 
underprediction due to under-prediction of mid- 
and outboard wing lift and outboard flap lift



Row ICase 2.3: Cp Cuts(out-board)
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a = 20.7o

All participants other than W-009 and W-10.3 
underpredict suction throughout the main-element

W-007.1 appear to have 
transition/grid related artifacts

W-004, W-005 and W-007 have large CLmax 
underprediction due to under-prediction of mid- 
and outboard wing lift



Case 2.3: Oilflow vs Streamlines 
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a = 23.5o

W-004.1

W-010.3W-009

W-005

WT Oilflow (ONERA)

W-007.1

W-001
EULER

Stall predictions:
All participants predict a 
large side-of-body separation 

All participants, except for 
W-009 show incipient mid-
board TE separation, 
consistent with experiment 
(due to lack of chine-vortex 
in Case 2.3)



Case 2.3 – High Angle of Attack Observations
• 5 – submissions for full AoA sweep; only 1 submissions within reasonable error margin at 

CLmax: 
• Caveat: W-010 submission has less CLmax error but does show some inboard-outboard 

error cancellation; lift is correct but pitching moment is too nose-up 
• W-010 as well as W-009 and W-005 show over-prediction of inboard flap suction peaks
• W-004.1 and W-007 show better agreement for wing-root suction peaks; but show large 

underpredictions for the outboard wing 
• All submissions (including W-010) show under-prediction of lift on the outboard flap -> 

consistent with systematically excess nose-up pitching moment in all submissions 

• All submissions show correct qualitative stall-onset mechanism – with separation occurring at 
the wing-root

• W-001 (Euler) is substantially less accurate compared to other WMLES participants
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Case 2.4

*Nominal grid used by participants. Presented grid size unless otherwise mentioned.

Wind Tunnel (WT) data is provided by ONERA

Participant 
ID Solver

Coarse 
Grid

Medium 
Grid Fine Grid

Blind 
Submission?

W-001 Adaptive Euler 228K* YES

W-005.1 FUN3D (FV) 304M 998M 2.33B* YES

W-005.2 FUN3D (FEM) 131M* YES

W-005.3 FUN3D(FV) 419M* NO

W-006 hpMusic 72M (DOF) 126M* 201M YES

W-012 NSU3D 131M* YES

W-013 SU2 131M* YES

W-014 FLUENT 986M* NO

W-004.1 CharLES (DSM) 168M 645M* 2.53B YES

W-004.2 CharLES (Vr) 645M* YES

W-007 LAVA 147M 325M 573M* YES

W-009 PowerFLOW 575M* YES

W-010.1 Volcano ScaLES (Vr) 436M 678M 1.26B* YES

W-010.3 Volcano ScaLES (DSM) 1.08B* YES

Angle of Attack (AoA) 
Case 2.1: 6o , 10o , 12o , 13o , 14o 
Case 2.2: 6o , 10o , 17.7o , 20o , 21.5o , 23o , 23.8o 
Case 2.3: 6o , 10o , 14o , 16o , 17.7o , 20.7o , 23.5o 
Case 2.4: 7.6o , 10o , 14o , 16o , 17.7o , 19.7o , 23.6o



Case 2.4: W-004.1 Grid Resolution Study  

63



Case 2.4: W-005 Grid Resolution Study  
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Case 2.4: W-005.1 (Finite Volume) vs W-005.2 (Finite Element)



Case 2.4: W-006 Grid Resolution Study  
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Case 2.4: W-010.1 Grid Resolution Study  

67

Complex stall behavior 
– non-monotonic post 
CLmax behavior

Would be useful to 
simulate angles of 
attack between 



Case 2.4: W-010 SGS Closure & Precision Sensitivity
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Case 2.4 Integrated F&M – All Submissions

EULER

<2% error in CLmax if 
above this line

Some submissions have 
low CLmax error but 
large low-alpha error

Majority submissions 
predict excess nose-up 
moment near CLmax 
regardless of the CL value



70

D Difference: (Prediction – Experiment)

Some participants  
have  very low CL 
error but large 
CMY  error at 
19.7deg. 

W-014 has a 
very low CL and 
CMY error at 
19.7deg, but a 
very large error 
at lower angles
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Submissions using coarse-committee grid (mixed element, 131M) 

Finite volume (poor 
agreement)

Finite Element 
(more promising)



Case 2.4: Oilflow vs Streamlines.             Coarse Grid Solutions
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a = 19.7o

W-001 EULER

Inaccurate flow 
patterns

WT Oilflow(ONERA) W-012 Coarse Grid (132M)

Tendency to have accurate separation 
patterns - need to run on finer grids

W-013 Coarse Grid (132M)

excessive
outboard
separation
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Finite Volume 
solvers: very 
accurate at CLmax 
but inaccurate at 
low-alpha

Submissions using Mixed element grids (Implicit time-stepping)

Spectral element solver has a 
more reasonable overall 
prediction with some 
underprediction at CLmax



Case 2.4: Oilflow vs Streamlines  Implicit & Mixed Element Grids
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W-005.1 (FV)WT Oilflow(ONERA) W-014 (FV) W-006 (High-Order)

a = 19.7o

Too little separation

Straighter side-of-body streamlines
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Submissions using Voronoi grids (Explicit time-stepping)

no transition 
treatment

“transition sensor” 
effectively treating portions 
of the slats as laminar

Very accurate CLmax value, 
but large error in CMY. Do 
we see a “pitch break” at 
CLmax instead of stall?
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Transition Treatment: W-007 Voronoi Grid

W-007 shows promising improvement based on a 
“transition sensor” to decide the switch between no-slip 
and WM boundary conditions

Arguments based on work by Bodart & Larrson (2012) 

Identical Voronoi Grids 
and discretization, only 
difference is wall-
boundary condition

W-007.2 misses the 
plateau in CMY near 
CLmax
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Transition Treatment: Tried by W-004 (Also Voronoi Grids)
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HCP L11, u'u' SWM (A = 1.0)

HCP L11, u'u' SWM (A = 1.2)

HCP L11, u'u' SWM (A = 1.4)
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-0.8000 -0.7000 -0.6000 -0.5000 -0.4000 -0.3000 -0.2000
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A
CM

W-004 reports very 
strong sensitivity to the 
one free-parameter 
(threshold) used in the 
wall-BC switch

Bottom line: 
• Clear that the state of the slat boundary layer has an influence of the maximum lift value predicted
• “Altering” the location of slat transition may provide a “change in the correct-direction”
• Unclear if this specific method can be made predictive; time will tell as more participants investigate ideas 
• Expect lots of work on this topic to be presented at SciTech 2025

Increasing portions of 
the slat and main-
element stay “laminar”

Increasing portions of 
the slat and main-
element stay “laminar”



Case 2.4: Oilflow vs Streamlines  Explicit & Voronoi Grids
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W-004.1

Incipient Side of body 
separation at CLmax 

WT Oilflow(ONERA) W-007.2

a = 19.7o

W-007.1

Excess outboard separation

Numerical artifacts?
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Both Cartesian Immersed 
Boundary codes have similar 
overall accuracy, although very 
different models (LBM-HRLES vs 
Navier-Stokes WMLES) with some 
underprediction at CLmax

Submissions using Cartesian Octree grids (Explicit time-stepping)



Case 2.4: Oilflow vs Streamlines  Explicit & Cartesian Grids
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W-009WT Oilflow(ONERA) W-010.3

a = 19.7o

Straighter side-of-body streamlines



Case 2.4: 
Oilflow vs Streamlines

• Clmax for Case 2.3 does not show any 
flap separation; but Case 2.4 does show 
some flap separation near the flap-gap; 
potentially influenced by nacelle-wake 81

W-010
W-009

W-005.1

WT Oilflow (ONERA) a = 19.7o

W-004.1



Case 2.4: Oilflow vs Streamlines
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W-006 W-012

WT Oilflow (ONERA) a = 19.7o

W-007.1 W-007.2

• Clmax for Case 2.3 does not show any 
flap separation; but Case 2.4 does show 
some flap separation near the flap-gap; 
potentially influenced by nacelle-wake



Case 2.4: Cp Cuts(in-board)
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a = 19.7o Row A

W-007.2 has large under-prediction 
of inboard flap suction peak, 
consistent with side-of-body 
separation (but CL>2.60)

W-005, W-009 and W-010 have 
slight over-prediction of flap 
suction (CL > 2.60)



Case 2.4: Cp Cuts(mid-board)
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a = 19.7o Row E

Flap suction under-prediction is less severe 
compared to Case 2.3
W-007.2 is slightly higher, and W-009/W-
010.3 are slightly lower



Case 2.4: Cp Cuts(out-board)
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a = 19.7o Row I

W-007.2 over-predicts suction of the outboard 
wing: low-inboard lift cancels, excess outboard 
lift; responsible for a pitch-break at 19.7o ?

W-005.1 under-predicts outboard suction: high-
inboard lift cancels, low outboard lift; 
responsible for excess nose-up pitching moment



Case 2.4: Cp Cuts(out-board)
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a = 19.7o Row J

Experimental data is missing – however there are some interesting trends…

W-007.2 shows a larger suction near the wing-tip, 
which is consistent with helps explain the larger 
nose-down moment observed in the result



Case 2.4: Oilflow vs Streamlines
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a = 23.6o

W-006WT Oilflow(ONERA) W-004.1

W-010.3

W-005.1

Submissions that showed 
attached flow on the nacelle W-014W-007.2



Case 2.4: Oilflow vs Streamlines a = 23.6o

WT Oilflow (ONERA)

W-007.1 W-009 W-010.1 (Vreman)

Submissions that 
showed separated 
flow on the nacelle

Did not include 
streamlines on 
nacelle

W-012
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Case 2.4: Cp Cuts(in-board)
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a = 23.6o Row A

All participants show inboard-stall and 
reasonably accurate inboard pressure.   



Case 2.4: Cp Cuts(mid-board)
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a = 23.6o Row E

Most submissions under-predict 
(except W-007.2) outboard-flap suction 
– lots of scatter 

W-012 shows some “transition” 
artifacts



Case 2.4: Oilflow vs Streamlines
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a = 23.6o

W-006WT Oilflow
(ONERA)

W-004.1 W-001
EULER

W-005.1

W-007.2 W-009 W-010 W-012 W-014

Excessive 
separation Too little 

separation
Incorrect 
patterns

Too little 
separation

Too little 
separation



Case 2.4: Cp Cuts(out-board)
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a = 23.6o Row I

Again, majority of participants under-predict outboard lift, W-010.3 
is reasonably accurate, W-007.2 shows slight overprediction of 
outboard lift 



Case 2.4 – Observations
• 9 submissions – only 3 within 2% CL error at CLmax:

• The 3 submissions still show some evidence of inboard/outboard error-cancellation: over-predict 
inboard flap CL and under-predict outboard flap CL

• Only 2 of those 3 submissions also predict the correct CL at lower angles
• Most other participants under-predicted CLmax because of lower lift mid-board and out-board

• Flap-related challenges mostly consistent with those from Case 2.3;  some submissions 
under-predict outboard flap flow-separation leading to much higher lift, others show some 
error cancellation

• All submissions predict the correct stall-onset mechanism (inboard stall)
• Majority of participants did not show inboard separation at 19.7o; only 1 participant showed incipient 

separation
• All participants showed well-formed inboard separation at 23.6o

• Virtually all participants predicted the correct qualitative wedge-shaped flow-separation patterns on the 
outboard wing even on coarse grids

• W-001 (Euler) submissions has reasonable CLmax value but inaccurate flow (based surface 
and Cp): lots of error cancellation
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Case 3 

*Nominal grid used by participants in Cases 3.1, 3.2, 3.3, 3.4

Case 3.1: Re= 1.05 Million
Case 3.2: Re= 5.49 Million
Case 3.3: Re= 16 Million
Case 3.4: Re= 30 Million

Participa
nt ID Solver Grids Used

W-001 Adaptive Euler 164K*

W-003 BCFD 470* 569*

W-005.1 FUN3D (FV) 460M 460M*
476M*

W-006 hpMusic 83M 
(DOF) 145M* 232M

W-004.1 CharLES (DSM) 103M 384M* 1.49B* 5.89B

W-007.2 LAVA 110M 193M 431M*

W-009 PowerFLOW
65M 
98M 

125M

167M/
240M 
325M

457M* 
627M* 
826M*

1.37B

W-010.3 Volcano ScaLES 
(DSM) 256M 562M 1.08B* 1.25B

W-011 FFVHC-ACE 640M 2.56B 11.6B*

Angle of Attack (AoA) for each Re Number 
Case 3: 6o , 10o , 14o , 16o , 18o , 19o , 20o , 22o



WMLES TFG Objectives for Case 3

• Can WMLES predict the first order effect the Reynolds number? 

• Observation: most submissions largely agree in qualitatively in terms of Re sensitivity

• Can we achieve grid-converged loads for the high-Reynolds number cases?

• Observation: Maybe, but substantially higher resolution simulations are needed for 
confirmation; initial submissions look promising.

• Are some of the low-Re issues identified in Case 1 and 2 mitigated when large 
Re simulations are performed?

• Observation: Unclear at this time, since high resolution simulations are needed to assess 
this rigorously.

5th CFD High Lift Prediction Workshop
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Case 3.2 Integrated F&M

EULER All participants predict a pitch break in Free air at 22o; this is 
in stark contrast to HLPW4 where it was unclear whether 
pitch break would occur in free-air (probably due to minor 
geometry change and AoA differences)

More scatter in CL at high-alpha, some scatter in 
low-alpha 

Re: 5.49M
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Case 3.3 Integrated F&M

EULER • As Re number is increased, we observe more scatter 
in CL at low alpha and CLmax show less scatter 
compared to Case 3.2

• Not all solutions show the pitch break at 22o

Re: 16M
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Case 3.4 Integrated F&M

EULER • At Re=30 M, more scatter in CL at low-alpha, 
less scatter at Clmax

• Low Re: More scatter in CL at high-alpha
• Not all solutions show the pitch break at 22o

Re: 30M



Case 3.4: Streamlines 
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a = 6.0o

W-004.1

W-006

W-005.1

W-009 W-011

W-010.3

W-007.2

4 submissions showing 
essentially outboard identical 
flap separation pattern

Shows inboard flap separation and 
large outboard flap separation

large outboard flap separation

Missing separation near the flap-fairing



Case 3.4: Cp Cuts(mid-board)
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a = 6.0o Row D

Likely non-local effect of differences in 
flap separation



Case 3.4: Streamlines 
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a = 20.0o

W-004.1

W-005W-003 W-007.2

W-009 W-011W-010.3

W-006

a = 19.57o



Case 3.4: Cp Cuts(in-board)
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a = 20.0o Row A

Differences in flap suction 
peak between W-005, W-009 
and W-010 are much larger of 
the higher Re case compared 
to Case 2.4



Case 3.4: Cp Cuts(mid-board)
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a = 20.0o Row D

Outboard flap trends mostly 
consistent with Case 2.4



Case 3.4: Cp Cuts(out-board)
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a = 20.0o Row I

Outboard main-element 
suction trends also mostly 
consistent with Case 2.4



5th CFD High Lift Prediction Workshop
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• Participants submitted 500+ simulation results with grid points ranging 120 Million through 11.6 Billion.
• Majority of results for Case 2 are from blind simulations.

• Extensive grid resolution studies were performed. 
• Best practice grid results were relatively good agreement with the ONERA WT data (Cases 2.2, 2.3, and 2.4) 

• Flap-separation dominates the low-alpha integrated loads (Cases 2.3, and 2.4) 
• Some submissions under-predict outboard flap flow-separation leading to much higher lift
• Majority of submissions predict the correct stall-onset mechanism (inboard stall)
• Most participants predicted the correct qualitative wedge-shaped flow-separation patterns on the outboard wing
• Coarse grid results suffer predicting Clmax and flow patterns accurately
• (Euler) submissions has reasonable CLmax value but inaccurate flow (based surface and Cp): lots of error cancellation

• Case 3 submissions showed scatter due to flap suction peak. Finer resolution may be required in these regions 
even low Re cases (2.4 and 3.2)

• Transition treatment improved CLmax for one participant’s results for Case 2.4. Further sensitivity studies are  
is necessary along with WT data.

• Clean wing WT data will be extremely helpful (Case 1 and/or Case 2.1). WMLES simulations should be carried 
out exactly how the transition is treated in the experiment.

Conclusions and Outlook


