

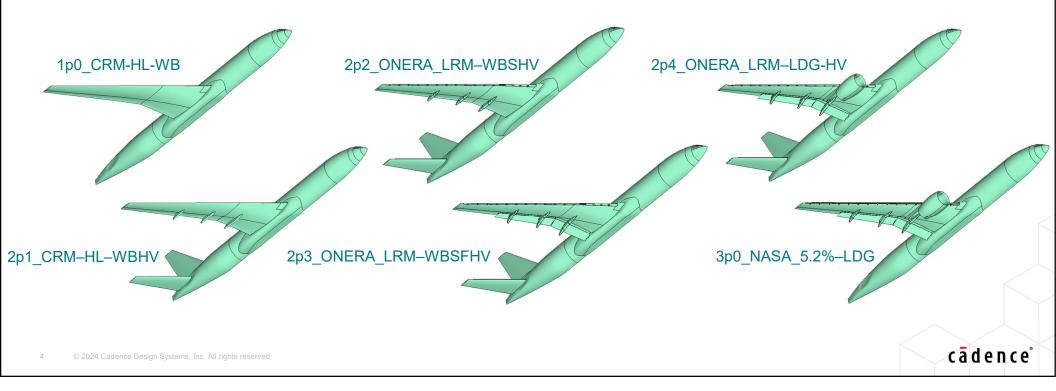

#### HLPW5: Summary of Unstructured Mesh Generation Efforts with Fidelity Pointwise for Fixed-Grid RANS Analyses

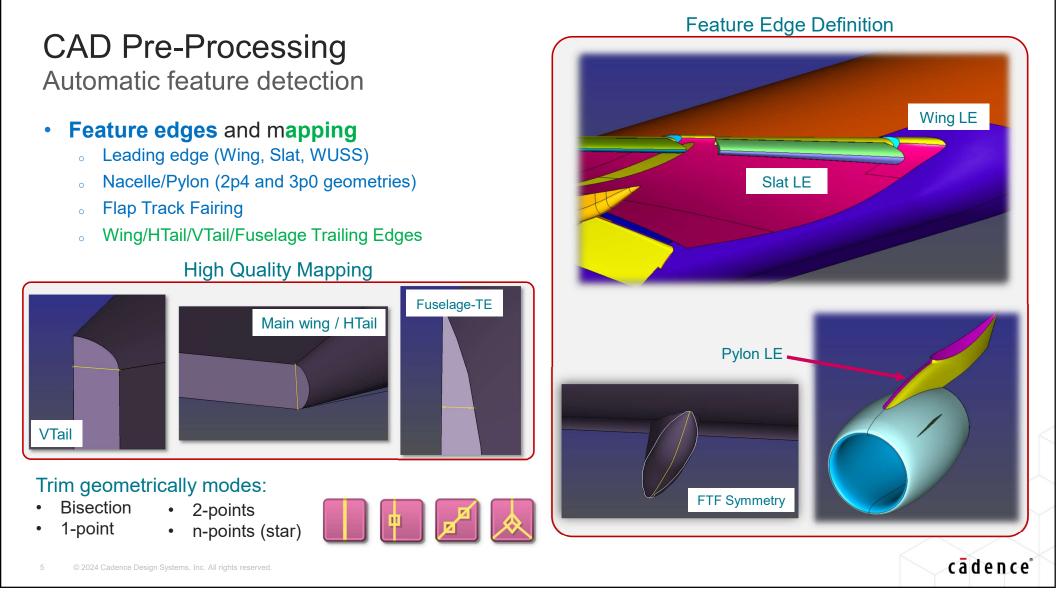
Reza Djeddi, Principal Application Engineer, Cadence Design Systems, Inc. August 2, 2024, Las Vegas, NV

#### Outline

- CAD Pre-Processing
  - CRM-HL Configurations
  - Automatic Feature Detection
  - Healing and Pinch-Point Remediation
- Automation
  - Assisted Quilt Assembly (AQA)
  - Automatic Surface Meshing (ASM)
  - Automatic Volume Meshing (AVM)
  - Automated Gridding Workflow
- Summary of Grid Families
- Conclusions

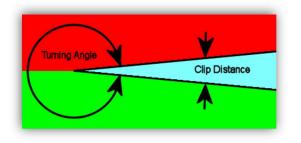






#### CAD Pre-Processing Configurations, Feature Detection, Pinch Point Remediation

3 © 2024 Cadence Design Systems, Inc. All rights reserved.

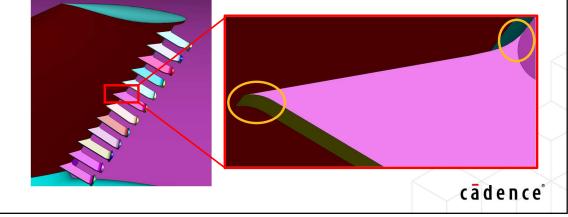
#### CAD Pre-Processing CRM-HL configurations


- 6 different geometries were meshed for this workshop
- 40 meshes were generated and provided in various formats (+ PW project files)





#### CAD Pre-Processing Automatic pinch-point remediation


- Pinch points
  - Wing under slat surface (WUSS)
  - Slat brackets



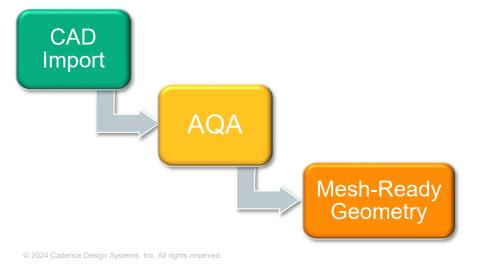
# WUSS-IB

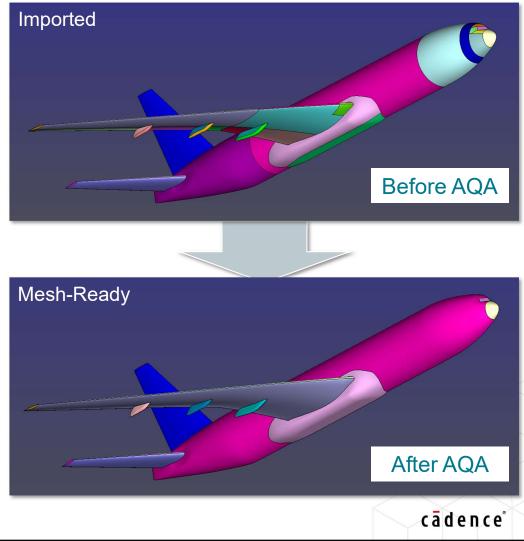
#### Remediation

- Fully automated
- All pinch points that meet a certain turning angle threshold are detected
- Pinch points are remediated automatically using a clip distance of 0.02" (WUSS) and 0.04" (slat brackets)



6 © 2024 Cadence Design Systems, Inc. All rights reserved.





#### Automation Flashpoint Tools (AQA, ASM, AVM), Automated Gridding Workflow

7 © 2024 Cadence Design Systems, Inc. All rights reserved.

#### Automation Geometry preparation

- Assisted Quilt Assembly (AQA)
  - Regions of engineering topology (quilts, in Pointwise terminology) are defined
  - These topological regions are created by assembling smaller surfaces into larger quilts
  - AQA automatically classifies/groups topological surfaces by identifying the "type of boundary" between them: curvature, convex, concave





#### **Automation**

#### Automatic Surface Meshing (ASM)

- Automatic Surface Meshing •
  - A surface mesh recipe is defined for the most complex geometry 0 (2p4: ONERA\_LDG)
  - Mapping filters are used to enforce a certain number of subdivisions 0 across the trailing edges (wing, flap, pylon, nacelle, and fuselage)

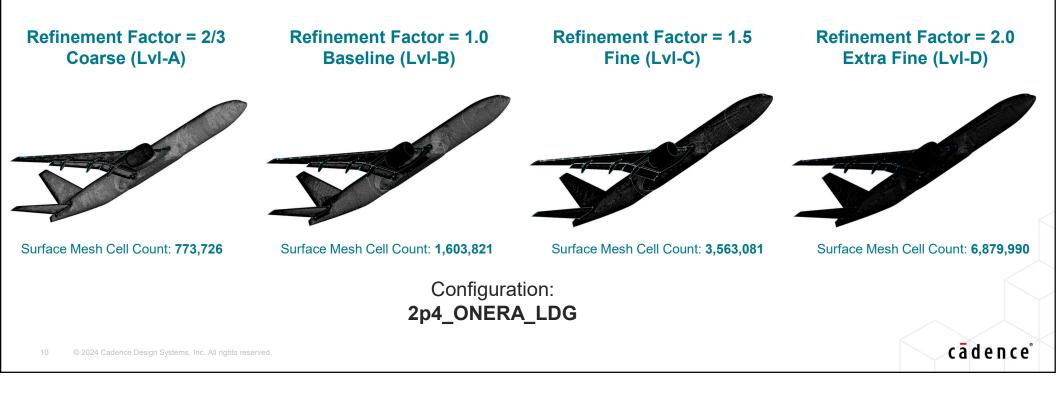
#### Anisotropic stretching at surface boundaries

| Guidelines | Level | Fuselage<br>Cell Size               | Cells<br>(Points)<br>on TE | Chordwise<br>Spacing<br>(Ang. resol.) * | Mesh<br>Factor |
|------------|-------|-------------------------------------|----------------------------|-----------------------------------------|----------------|
| -          | А     | $\leq 2.25\% C_{REF}$               | 4 (5)                      | 4.5 deg                                 |                |
| Gridding   | В     | $\leq 1.5\% C_{REF}$                | 6 (7)                      | 3.0 deg                                 | 2/3            |
| Gride      | С     | $\leq 1.0\% C_{REF}$                | 9 (10)                     | 2.0 deg                                 | 2/3            |
|            | D     | $\leq 0.75\% C_{REF}$               | 12 (13)                    | 1.5 deg                                 | 3/4            |
| GMGW-3     | Е     | $\leq 0.5\% \text{ C}_{\text{REF}}$ | 18 (19)                    | 1.0 deg                                 | 2/3            |
| GN         | F     | $\leq 0.33\% C_{REF}$               | 27 (28)                    | 0.66 deg                                | 2/3            |

\* Constant layers off LEs (delayed growth) and reduced growth rate are also incorporated

Wing Root Wing Tip

Automatically classified based on topology


- **Curvature**
- Convex
- Concave

| Set | #    | Name                 | Туре              | Value |
|-----|------|----------------------|-------------------|-------|
|     | 93   | Unspecified          | Off               | -     |
|     | 40   | Curvature            | Angle             | 15    |
|     | 143  | Convex               | Max. Aspect Ratio | 20    |
|     | 205  | Concave              | Off               | 20    |
|     | 3    | fuse tail            | Max. Aspect Ratio | 20    |
|     | 66   | slat brackets upper  | Off               | 0     |
|     | 1332 | slat brackets        | Off               | 0     |
|     | 130  | FTF brackets         | Off               | 0     |
|     | 36   | slat endwall         | Max. Aspect Ratio | 8     |
|     | 5    | wing LE              | Angle             | 3     |
|     | 9    | standard LE          | Angle             | 5     |
|     | 2    | Nacelle lip          | Angle             | 15    |
|     | 7    | Strake root          | Off               | 0     |
|     | 1    | Pylon LE             | Angle             | 5     |
|     | 16   | slat endwall concave | Off               | 0     |
|     | 5    | flap - fuse          | Off               | 0     |
|     | 61   | pylon edge           | Max. Aspect Ratio | 8     |
|     | 83   | FTF curvature        | Angle             | 15    |
|     | 10   | flap gap             | Off               | 0     |
|     | 14   | flap - fuse gap      | Max. Aspect Ratio | 3     |
|     | 59   | FTF refinement       | Max. Aspect Ratio | 20    |
|     |      |                      |                   |       |

#### Automation ASM – Refinement Factor

#### **ASM and Grid Family Generation**

The "Refinement Factor" parameter is used to create additional grid levels in the family (LvI-A, LvI-C, LvI-D, ...)

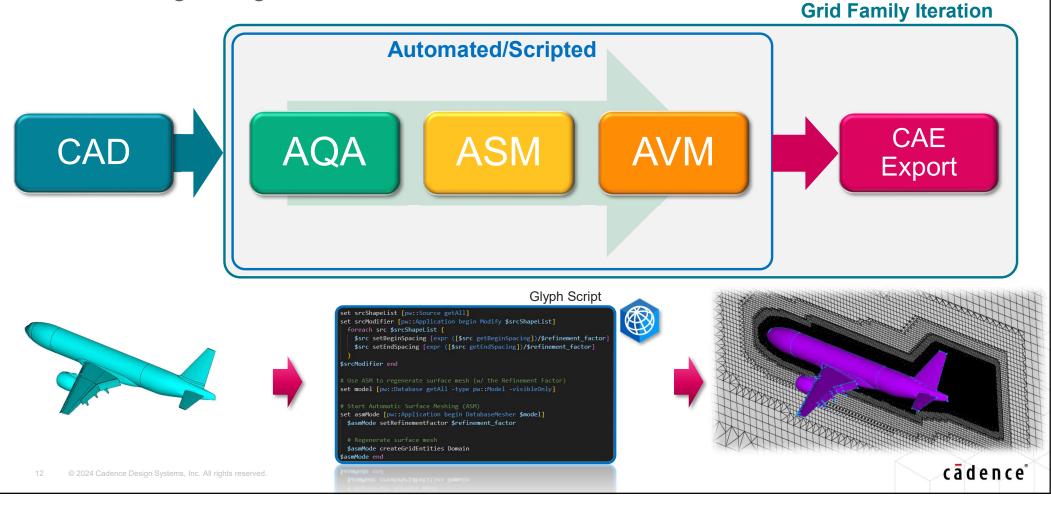


## Automatic Volume Meshing (AVM)

- Automatic Volume Meshing
  - A rectangular computational domain is defined with a 100\*MAC extent in each direction

#### Refinement sources

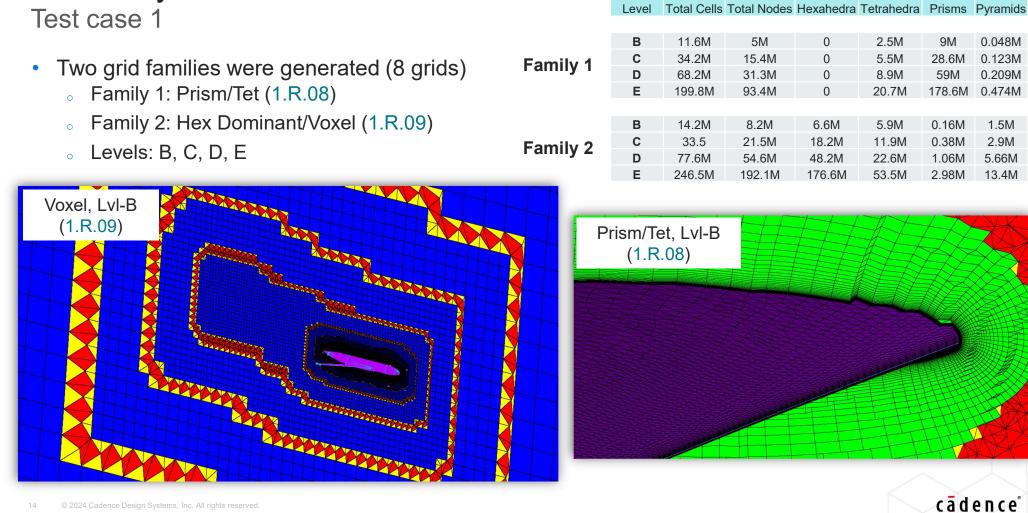
 Source shapes are introduced for additional wake refinement in important regions (best practices)


| Guidelines      | Level | Estimated<br>y+ | BL Growth<br>Rate | Mesh<br>Factor |
|-----------------|-------|-----------------|-------------------|----------------|
| Guic            | А     | 2.25            | 1.25              |                |
| -               | В     | 1.5             | 1.16              | 2/3            |
| riddi           | С     | 1.0             | 1.10              | 2/3            |
| Э<br>Ю          | D     | 3/4             | 1.07              | 3/4            |
| GMGW-3 Gridding | Е     | 1/2             | 1.05              | 2/3            |
| GMG             | F     | 1/3             | 1.03              | 2/3            |

Hex-Dominant BL Mesh Hex-Core **Voxel Mesh** Side View **Top View** Aft View cādence

11 © 2024 Cadence Design Systems, Inc. All rights reserved.

#### Automation


Automated gridding workflow





#### Summary of Grid Families Fixed-Grid RANS: Test Cases 1, 2, and 3

13 © 2024 Cadence Design Systems, Inc. All rights reserved.



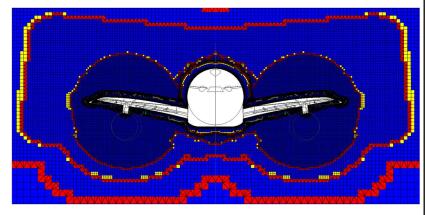
#### Summary of Grid Families

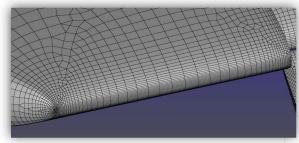

Test case 1

|                                                                    | Config.  | Level  | Total Cells | Total Nodes | Hexahedra | Tetrahedra | Prisms | Pyramids   |
|--------------------------------------------------------------------|----------|--------|-------------|-------------|-----------|------------|--------|------------|
| Summary of Grid Families                                           |          |        |             |             |           |            |        |            |
| Summary Of Ghu Families                                            | Case 2.1 | Α      | 18.6M       | 10.4M       | 8.2M      | 8.2M       | 160K   | 1.9M       |
| Test case 2                                                        |          | В      | 72.5M       | 53.1M       | 48.1M     | 19.0M      | 327.9K | 5.1M       |
|                                                                    |          | С      | 112.0M      | 76.4M       | 66.9M     | 35.8M      | 981.5K | 8.3M       |
|                                                                    | •        | D      | 449.0M      | 370.6M      | 349.5M    | 76.7M      | 2.2M   | 20.5M      |
| <ul> <li>One grid family was generated and supplied for</li> </ul> |          | ٨      | 33M         | 18.7M       | 14.6M     | 14.1M      | 0.68M  | 3.5M       |
|                                                                    | Case 2.2 | A<br>B | 118M        | 80.7M       | 70.3M     | 36.4M      | 1.5M   | 9.7M       |
| each configuration (4 families, 16 grids)                          | ISe      | c      | 203M        | 142M        | 124.6M    | 60.6M      | 3.3M   | 15.1M      |
| <ul> <li>Grid Family: 2.R.03</li> </ul>                            | ပိ       | D      | 663M        | 521.5M      | 481.5M    | 137.4M     | 7.8M   | 36.2M      |
| -                                                                  |          | _      |             |             |           |            |        |            |
| <ul> <li>Hex Dominant/Voxel</li> </ul>                             | 3        | Α      | 80M         | 40M         | 30M       | 40M        | 1.1M   | 9M         |
| <ul> <li>Levels: A, B, C, D</li> </ul>                             | e 2.3    | В      | 148M        | 99M         | 85M       | 48M        | 2.3M   | 12.5M      |
| • Levels: A, D, C, D                                               | Case     | С      | 340M        | 229M        | 198M      | 110M       | 5.2M   | 27M        |
|                                                                    | 0        | D      | 720M        | 484M        | 421M      | 234M       | 10.7M  | 54M        |
|                                                                    |          |        |             |             |           |            |        |            |
|                                                                    | 2.4      | А      | 61.1M       | 36.4M       | 29.3M     | 24.5M      | 1.1M   | 6.1M       |
|                                                                    | e 2      | В      | 198M        | 133M        | 114.8M    | 63.6M      | 2.9M   | 16.5M      |
|                                                                    | Case     | С      | 433.8M      | 316.8M      | 283M      | 114.9M     | 7.0M   | 28.9M      |
|                                                                    | U        | D      | 1204M       | 936M        | 859.9M    | 261M       | 15.3M  | 68.4M      |
|                                                                    |          |        |             |             |           |            |        |            |
|                                                                    | oxel, 2. |        | B           |             |           |            |        |            |
|                                                                    | (2.R.    | 03)    |             |             |           |            | Mamm   |            |
|                                                                    |          |        |             |             |           | B          |        | SAMAMAN SA |
|                                                                    |          |        | [           |             |           |            | Luunn, |            |
|                                                                    |          |        |             | <b>(3)</b>  |           |            |        |            |
|                                                                    |          |        |             |             | 1 Pr      |            |        |            |
|                                                                    |          |        |             |             |           |            | £      |            |
|                                                                    |          |        |             |             |           |            |        |            |
|                                                                    |          |        |             |             |           |            | wwd    |            |
|                                                                    |          |        |             |             |           |            |        |            |
| 15 © 2024 Cadence Design Systems, Inc. All rights reserved.        |          |        |             |             |           |            | cād    | ence       |
|                                                                    |          |        |             |             |           |            |        |            |

### Summary of Grid Families

Test case 3


- One grid family was generated and • supplied for each Reynolds number (4 families, 16 grids)
  - Grid Family: 3.R.01 0
  - Hex Dominant/Voxel 0
  - Levels: A, B, C, D 0




|   | Re #<br>(x10 <sup>6</sup> )                            | Level | Total Cells | Total Nodes | Hexahedra | Tetrahedra | Pyramids | Prisms |
|---|--------------------------------------------------------|-------|-------------|-------------|-----------|------------|----------|--------|
|   | 1.05                                                   | А     | 52M         | 29M         | 23M       | 22M        | 6M       | 0.7M   |
|   | 5.49                                                   | A     | 58M         | 35M         | 28M       | 22M        | 6M       | 1M     |
|   | 16                                                     | A     | 62M         | 39M         | 32M       | 22M        | 6M       | 1.2M   |
|   | 30                                                     | А     | 64M         | 41M         | 34M       | 22M        | 6M       | 1.3M   |
|   |                                                        |       |             |             |           |            |          |        |
|   | 1.05                                                   | В     | 162M        | 103M        | 88M       | 58M        | 15M      | 1.6M   |
|   | 5.49                                                   | В     | 179M        | 120M        | 103M      | 58M        | 15M      | 2.4M   |
|   | 16                                                     | В     | 189M        | 130M        | 114M      | 58M        | 15M      | 2.8M   |
|   | 30                                                     | В     | 196M        | 137M        | 120M      | 58M        | 15M      | 3.1M   |
|   |                                                        |       |             |             |           |            |          |        |
|   | 1.05                                                   | С     | 352M        | 242M        | 211M      | 108M       | 27M      | 4.7M   |
|   | 5.49                                                   | С     | 407M        | 297M        | 265M      | 108M       | 27M      | 7M     |
|   | 16                                                     | С     | 444M        | 333M        | 300M      | 108M       | 27M      | 8.5M   |
|   | 30                                                     | С     | 465M        | 354M        | 321M      | 108M       | 27M      | 9.3M   |
|   |                                                        |       |             |             |           |            |          |        |
|   | 1.05                                                   | D     | 956M        | 700M        | 631M      | 251M       | 62M      | 10M    |
|   | 5.49                                                   | D     | 1.07B       | 835M        | 762M      | 250M       | 62M      | 15M    |
| _ | 16                                                     | D     | 1.18B       | 921M        | 848M      | 250M       | 62M      | 18M    |
|   | 30                                                     | D     | 1.23B       | 973M        | 898M      | 250M       | 62M      | 20M    |
|   |                                                        |       |             |             |           |            |          |        |
|   | Voxel, 3.0-Lvl-B<br>Re = 5.49x10 <sup>6</sup> (3.R.01) |       |             |             |           |            |          |        |

#### Conclusions Gridding for HLPW5

- Incorporated automated workflows for the construction of all mesh families
- Developed new best practices based on the experience from past HLPWs
  - Angular resolution off leading edges yields a "fixed" resolution of the geometry curvature
  - Constant layers combined with lower growth rate for anisotropic meshing across LEs
  - Automatically-mapped gridding techniques for TEs
  - Leveraged hex dominant volume meshing for flow-aligned wake capturing off high-lift elements
- Developed a "mesh recipe" based on best practices outlined
  - Consistent mesh characteristics and quality across the entire grid family
  - o Order of magnitude reduction in turnaround time for mesh family generation





cādence

17 © 2024 Cadence Design Systems, Inc. All rights reserved.

# cādence<sup>®</sup>

© 2024 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI specifications are registered trademarks or trademarks or trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.